What are the required steps to convert base 10 integer
number 53 645 382 551 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 53 645 382 551 ÷ 2 = 26 822 691 275 + 1;
- 26 822 691 275 ÷ 2 = 13 411 345 637 + 1;
- 13 411 345 637 ÷ 2 = 6 705 672 818 + 1;
- 6 705 672 818 ÷ 2 = 3 352 836 409 + 0;
- 3 352 836 409 ÷ 2 = 1 676 418 204 + 1;
- 1 676 418 204 ÷ 2 = 838 209 102 + 0;
- 838 209 102 ÷ 2 = 419 104 551 + 0;
- 419 104 551 ÷ 2 = 209 552 275 + 1;
- 209 552 275 ÷ 2 = 104 776 137 + 1;
- 104 776 137 ÷ 2 = 52 388 068 + 1;
- 52 388 068 ÷ 2 = 26 194 034 + 0;
- 26 194 034 ÷ 2 = 13 097 017 + 0;
- 13 097 017 ÷ 2 = 6 548 508 + 1;
- 6 548 508 ÷ 2 = 3 274 254 + 0;
- 3 274 254 ÷ 2 = 1 637 127 + 0;
- 1 637 127 ÷ 2 = 818 563 + 1;
- 818 563 ÷ 2 = 409 281 + 1;
- 409 281 ÷ 2 = 204 640 + 1;
- 204 640 ÷ 2 = 102 320 + 0;
- 102 320 ÷ 2 = 51 160 + 0;
- 51 160 ÷ 2 = 25 580 + 0;
- 25 580 ÷ 2 = 12 790 + 0;
- 12 790 ÷ 2 = 6 395 + 0;
- 6 395 ÷ 2 = 3 197 + 1;
- 3 197 ÷ 2 = 1 598 + 1;
- 1 598 ÷ 2 = 799 + 0;
- 799 ÷ 2 = 399 + 1;
- 399 ÷ 2 = 199 + 1;
- 199 ÷ 2 = 99 + 1;
- 99 ÷ 2 = 49 + 1;
- 49 ÷ 2 = 24 + 1;
- 24 ÷ 2 = 12 + 0;
- 12 ÷ 2 = 6 + 0;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
53 645 382 551(10) = 1100 0111 1101 1000 0011 1001 0011 1001 0111(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 36.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 36,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
53 645 382 551(10) Base 10 integer number converted and written as a signed binary code (in base 2):
53 645 382 551(10) = 0000 0000 0000 0000 0000 0000 0000 1100 0111 1101 1000 0011 1001 0011 1001 0111
Spaces were used to group digits: for binary, by 4, for decimal, by 3.