What are the required steps to convert base 10 integer
number 432 345 572 951 719 862 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 432 345 572 951 719 862 ÷ 2 = 216 172 786 475 859 931 + 0;
- 216 172 786 475 859 931 ÷ 2 = 108 086 393 237 929 965 + 1;
- 108 086 393 237 929 965 ÷ 2 = 54 043 196 618 964 982 + 1;
- 54 043 196 618 964 982 ÷ 2 = 27 021 598 309 482 491 + 0;
- 27 021 598 309 482 491 ÷ 2 = 13 510 799 154 741 245 + 1;
- 13 510 799 154 741 245 ÷ 2 = 6 755 399 577 370 622 + 1;
- 6 755 399 577 370 622 ÷ 2 = 3 377 699 788 685 311 + 0;
- 3 377 699 788 685 311 ÷ 2 = 1 688 849 894 342 655 + 1;
- 1 688 849 894 342 655 ÷ 2 = 844 424 947 171 327 + 1;
- 844 424 947 171 327 ÷ 2 = 422 212 473 585 663 + 1;
- 422 212 473 585 663 ÷ 2 = 211 106 236 792 831 + 1;
- 211 106 236 792 831 ÷ 2 = 105 553 118 396 415 + 1;
- 105 553 118 396 415 ÷ 2 = 52 776 559 198 207 + 1;
- 52 776 559 198 207 ÷ 2 = 26 388 279 599 103 + 1;
- 26 388 279 599 103 ÷ 2 = 13 194 139 799 551 + 1;
- 13 194 139 799 551 ÷ 2 = 6 597 069 899 775 + 1;
- 6 597 069 899 775 ÷ 2 = 3 298 534 949 887 + 1;
- 3 298 534 949 887 ÷ 2 = 1 649 267 474 943 + 1;
- 1 649 267 474 943 ÷ 2 = 824 633 737 471 + 1;
- 824 633 737 471 ÷ 2 = 412 316 868 735 + 1;
- 412 316 868 735 ÷ 2 = 206 158 434 367 + 1;
- 206 158 434 367 ÷ 2 = 103 079 217 183 + 1;
- 103 079 217 183 ÷ 2 = 51 539 608 591 + 1;
- 51 539 608 591 ÷ 2 = 25 769 804 295 + 1;
- 25 769 804 295 ÷ 2 = 12 884 902 147 + 1;
- 12 884 902 147 ÷ 2 = 6 442 451 073 + 1;
- 6 442 451 073 ÷ 2 = 3 221 225 536 + 1;
- 3 221 225 536 ÷ 2 = 1 610 612 768 + 0;
- 1 610 612 768 ÷ 2 = 805 306 384 + 0;
- 805 306 384 ÷ 2 = 402 653 192 + 0;
- 402 653 192 ÷ 2 = 201 326 596 + 0;
- 201 326 596 ÷ 2 = 100 663 298 + 0;
- 100 663 298 ÷ 2 = 50 331 649 + 0;
- 50 331 649 ÷ 2 = 25 165 824 + 1;
- 25 165 824 ÷ 2 = 12 582 912 + 0;
- 12 582 912 ÷ 2 = 6 291 456 + 0;
- 6 291 456 ÷ 2 = 3 145 728 + 0;
- 3 145 728 ÷ 2 = 1 572 864 + 0;
- 1 572 864 ÷ 2 = 786 432 + 0;
- 786 432 ÷ 2 = 393 216 + 0;
- 393 216 ÷ 2 = 196 608 + 0;
- 196 608 ÷ 2 = 98 304 + 0;
- 98 304 ÷ 2 = 49 152 + 0;
- 49 152 ÷ 2 = 24 576 + 0;
- 24 576 ÷ 2 = 12 288 + 0;
- 12 288 ÷ 2 = 6 144 + 0;
- 6 144 ÷ 2 = 3 072 + 0;
- 3 072 ÷ 2 = 1 536 + 0;
- 1 536 ÷ 2 = 768 + 0;
- 768 ÷ 2 = 384 + 0;
- 384 ÷ 2 = 192 + 0;
- 192 ÷ 2 = 96 + 0;
- 96 ÷ 2 = 48 + 0;
- 48 ÷ 2 = 24 + 0;
- 24 ÷ 2 = 12 + 0;
- 12 ÷ 2 = 6 + 0;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
432 345 572 951 719 862(10) = 110 0000 0000 0000 0000 0000 0010 0000 0111 1111 1111 1111 1111 1011 0110(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 59.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 59,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
432 345 572 951 719 862(10) Base 10 integer number converted and written as a signed binary code (in base 2):
432 345 572 951 719 862(10) = 0000 0110 0000 0000 0000 0000 0000 0010 0000 0111 1111 1111 1111 1111 1011 0110
Spaces were used to group digits: for binary, by 4, for decimal, by 3.