What are the required steps to convert base 10 integer
number 2 147 549 545 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 2 147 549 545 ÷ 2 = 1 073 774 772 + 1;
- 1 073 774 772 ÷ 2 = 536 887 386 + 0;
- 536 887 386 ÷ 2 = 268 443 693 + 0;
- 268 443 693 ÷ 2 = 134 221 846 + 1;
- 134 221 846 ÷ 2 = 67 110 923 + 0;
- 67 110 923 ÷ 2 = 33 555 461 + 1;
- 33 555 461 ÷ 2 = 16 777 730 + 1;
- 16 777 730 ÷ 2 = 8 388 865 + 0;
- 8 388 865 ÷ 2 = 4 194 432 + 1;
- 4 194 432 ÷ 2 = 2 097 216 + 0;
- 2 097 216 ÷ 2 = 1 048 608 + 0;
- 1 048 608 ÷ 2 = 524 304 + 0;
- 524 304 ÷ 2 = 262 152 + 0;
- 262 152 ÷ 2 = 131 076 + 0;
- 131 076 ÷ 2 = 65 538 + 0;
- 65 538 ÷ 2 = 32 769 + 0;
- 32 769 ÷ 2 = 16 384 + 1;
- 16 384 ÷ 2 = 8 192 + 0;
- 8 192 ÷ 2 = 4 096 + 0;
- 4 096 ÷ 2 = 2 048 + 0;
- 2 048 ÷ 2 = 1 024 + 0;
- 1 024 ÷ 2 = 512 + 0;
- 512 ÷ 2 = 256 + 0;
- 256 ÷ 2 = 128 + 0;
- 128 ÷ 2 = 64 + 0;
- 64 ÷ 2 = 32 + 0;
- 32 ÷ 2 = 16 + 0;
- 16 ÷ 2 = 8 + 0;
- 8 ÷ 2 = 4 + 0;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
2 147 549 545(10) = 1000 0000 0000 0001 0000 0001 0110 1001(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 32.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 32,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
2 147 549 545(10) Base 10 integer number converted and written as a signed binary code (in base 2):
2 147 549 545(10) = 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0001 0000 0001 0110 1001
Spaces were used to group digits: for binary, by 4, for decimal, by 3.