What are the required steps to convert base 10 integer
number 1 637 901 731 551 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 637 901 731 551 ÷ 2 = 818 950 865 775 + 1;
- 818 950 865 775 ÷ 2 = 409 475 432 887 + 1;
- 409 475 432 887 ÷ 2 = 204 737 716 443 + 1;
- 204 737 716 443 ÷ 2 = 102 368 858 221 + 1;
- 102 368 858 221 ÷ 2 = 51 184 429 110 + 1;
- 51 184 429 110 ÷ 2 = 25 592 214 555 + 0;
- 25 592 214 555 ÷ 2 = 12 796 107 277 + 1;
- 12 796 107 277 ÷ 2 = 6 398 053 638 + 1;
- 6 398 053 638 ÷ 2 = 3 199 026 819 + 0;
- 3 199 026 819 ÷ 2 = 1 599 513 409 + 1;
- 1 599 513 409 ÷ 2 = 799 756 704 + 1;
- 799 756 704 ÷ 2 = 399 878 352 + 0;
- 399 878 352 ÷ 2 = 199 939 176 + 0;
- 199 939 176 ÷ 2 = 99 969 588 + 0;
- 99 969 588 ÷ 2 = 49 984 794 + 0;
- 49 984 794 ÷ 2 = 24 992 397 + 0;
- 24 992 397 ÷ 2 = 12 496 198 + 1;
- 12 496 198 ÷ 2 = 6 248 099 + 0;
- 6 248 099 ÷ 2 = 3 124 049 + 1;
- 3 124 049 ÷ 2 = 1 562 024 + 1;
- 1 562 024 ÷ 2 = 781 012 + 0;
- 781 012 ÷ 2 = 390 506 + 0;
- 390 506 ÷ 2 = 195 253 + 0;
- 195 253 ÷ 2 = 97 626 + 1;
- 97 626 ÷ 2 = 48 813 + 0;
- 48 813 ÷ 2 = 24 406 + 1;
- 24 406 ÷ 2 = 12 203 + 0;
- 12 203 ÷ 2 = 6 101 + 1;
- 6 101 ÷ 2 = 3 050 + 1;
- 3 050 ÷ 2 = 1 525 + 0;
- 1 525 ÷ 2 = 762 + 1;
- 762 ÷ 2 = 381 + 0;
- 381 ÷ 2 = 190 + 1;
- 190 ÷ 2 = 95 + 0;
- 95 ÷ 2 = 47 + 1;
- 47 ÷ 2 = 23 + 1;
- 23 ÷ 2 = 11 + 1;
- 11 ÷ 2 = 5 + 1;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 637 901 731 551(10) = 1 0111 1101 0101 1010 1000 1101 0000 0110 1101 1111(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 41.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 41,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
1 637 901 731 551(10) Base 10 integer number converted and written as a signed binary code (in base 2):
1 637 901 731 551(10) = 0000 0000 0000 0000 0000 0001 0111 1101 0101 1010 1000 1101 0000 0110 1101 1111
Spaces were used to group digits: for binary, by 4, for decimal, by 3.