What are the required steps to convert base 10 integer
number 111 111 111 110 126 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 111 111 111 110 126 ÷ 2 = 55 555 555 555 063 + 0;
- 55 555 555 555 063 ÷ 2 = 27 777 777 777 531 + 1;
- 27 777 777 777 531 ÷ 2 = 13 888 888 888 765 + 1;
- 13 888 888 888 765 ÷ 2 = 6 944 444 444 382 + 1;
- 6 944 444 444 382 ÷ 2 = 3 472 222 222 191 + 0;
- 3 472 222 222 191 ÷ 2 = 1 736 111 111 095 + 1;
- 1 736 111 111 095 ÷ 2 = 868 055 555 547 + 1;
- 868 055 555 547 ÷ 2 = 434 027 777 773 + 1;
- 434 027 777 773 ÷ 2 = 217 013 888 886 + 1;
- 217 013 888 886 ÷ 2 = 108 506 944 443 + 0;
- 108 506 944 443 ÷ 2 = 54 253 472 221 + 1;
- 54 253 472 221 ÷ 2 = 27 126 736 110 + 1;
- 27 126 736 110 ÷ 2 = 13 563 368 055 + 0;
- 13 563 368 055 ÷ 2 = 6 781 684 027 + 1;
- 6 781 684 027 ÷ 2 = 3 390 842 013 + 1;
- 3 390 842 013 ÷ 2 = 1 695 421 006 + 1;
- 1 695 421 006 ÷ 2 = 847 710 503 + 0;
- 847 710 503 ÷ 2 = 423 855 251 + 1;
- 423 855 251 ÷ 2 = 211 927 625 + 1;
- 211 927 625 ÷ 2 = 105 963 812 + 1;
- 105 963 812 ÷ 2 = 52 981 906 + 0;
- 52 981 906 ÷ 2 = 26 490 953 + 0;
- 26 490 953 ÷ 2 = 13 245 476 + 1;
- 13 245 476 ÷ 2 = 6 622 738 + 0;
- 6 622 738 ÷ 2 = 3 311 369 + 0;
- 3 311 369 ÷ 2 = 1 655 684 + 1;
- 1 655 684 ÷ 2 = 827 842 + 0;
- 827 842 ÷ 2 = 413 921 + 0;
- 413 921 ÷ 2 = 206 960 + 1;
- 206 960 ÷ 2 = 103 480 + 0;
- 103 480 ÷ 2 = 51 740 + 0;
- 51 740 ÷ 2 = 25 870 + 0;
- 25 870 ÷ 2 = 12 935 + 0;
- 12 935 ÷ 2 = 6 467 + 1;
- 6 467 ÷ 2 = 3 233 + 1;
- 3 233 ÷ 2 = 1 616 + 1;
- 1 616 ÷ 2 = 808 + 0;
- 808 ÷ 2 = 404 + 0;
- 404 ÷ 2 = 202 + 0;
- 202 ÷ 2 = 101 + 0;
- 101 ÷ 2 = 50 + 1;
- 50 ÷ 2 = 25 + 0;
- 25 ÷ 2 = 12 + 1;
- 12 ÷ 2 = 6 + 0;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
111 111 111 110 126(10) = 110 0101 0000 1110 0001 0010 0100 1110 1110 1101 1110 1110(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 47.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 47,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
111 111 111 110 126(10) Base 10 integer number converted and written as a signed binary code (in base 2):
111 111 111 110 126(10) = 0000 0000 0000 0000 0110 0101 0000 1110 0001 0010 0100 1110 1110 1101 1110 1110
Spaces were used to group digits: for binary, by 4, for decimal, by 3.