What are the required steps to convert base 10 integer
number 1 111 000 010 000 470 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 111 000 010 000 470 ÷ 2 = 555 500 005 000 235 + 0;
- 555 500 005 000 235 ÷ 2 = 277 750 002 500 117 + 1;
- 277 750 002 500 117 ÷ 2 = 138 875 001 250 058 + 1;
- 138 875 001 250 058 ÷ 2 = 69 437 500 625 029 + 0;
- 69 437 500 625 029 ÷ 2 = 34 718 750 312 514 + 1;
- 34 718 750 312 514 ÷ 2 = 17 359 375 156 257 + 0;
- 17 359 375 156 257 ÷ 2 = 8 679 687 578 128 + 1;
- 8 679 687 578 128 ÷ 2 = 4 339 843 789 064 + 0;
- 4 339 843 789 064 ÷ 2 = 2 169 921 894 532 + 0;
- 2 169 921 894 532 ÷ 2 = 1 084 960 947 266 + 0;
- 1 084 960 947 266 ÷ 2 = 542 480 473 633 + 0;
- 542 480 473 633 ÷ 2 = 271 240 236 816 + 1;
- 271 240 236 816 ÷ 2 = 135 620 118 408 + 0;
- 135 620 118 408 ÷ 2 = 67 810 059 204 + 0;
- 67 810 059 204 ÷ 2 = 33 905 029 602 + 0;
- 33 905 029 602 ÷ 2 = 16 952 514 801 + 0;
- 16 952 514 801 ÷ 2 = 8 476 257 400 + 1;
- 8 476 257 400 ÷ 2 = 4 238 128 700 + 0;
- 4 238 128 700 ÷ 2 = 2 119 064 350 + 0;
- 2 119 064 350 ÷ 2 = 1 059 532 175 + 0;
- 1 059 532 175 ÷ 2 = 529 766 087 + 1;
- 529 766 087 ÷ 2 = 264 883 043 + 1;
- 264 883 043 ÷ 2 = 132 441 521 + 1;
- 132 441 521 ÷ 2 = 66 220 760 + 1;
- 66 220 760 ÷ 2 = 33 110 380 + 0;
- 33 110 380 ÷ 2 = 16 555 190 + 0;
- 16 555 190 ÷ 2 = 8 277 595 + 0;
- 8 277 595 ÷ 2 = 4 138 797 + 1;
- 4 138 797 ÷ 2 = 2 069 398 + 1;
- 2 069 398 ÷ 2 = 1 034 699 + 0;
- 1 034 699 ÷ 2 = 517 349 + 1;
- 517 349 ÷ 2 = 258 674 + 1;
- 258 674 ÷ 2 = 129 337 + 0;
- 129 337 ÷ 2 = 64 668 + 1;
- 64 668 ÷ 2 = 32 334 + 0;
- 32 334 ÷ 2 = 16 167 + 0;
- 16 167 ÷ 2 = 8 083 + 1;
- 8 083 ÷ 2 = 4 041 + 1;
- 4 041 ÷ 2 = 2 020 + 1;
- 2 020 ÷ 2 = 1 010 + 0;
- 1 010 ÷ 2 = 505 + 0;
- 505 ÷ 2 = 252 + 1;
- 252 ÷ 2 = 126 + 0;
- 126 ÷ 2 = 63 + 0;
- 63 ÷ 2 = 31 + 1;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 111 000 010 000 470(10) = 11 1111 0010 0111 0010 1101 1000 1111 0001 0000 1000 0101 0110(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 50.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 50,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
1 111 000 010 000 470(10) Base 10 integer number converted and written as a signed binary code (in base 2):
1 111 000 010 000 470(10) = 0000 0000 0000 0011 1111 0010 0111 0010 1101 1000 1111 0001 0000 1000 0101 0110
Spaces were used to group digits: for binary, by 4, for decimal, by 3.