What are the required steps to convert base 10 integer
number 1 010 101 000 010 962 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 010 101 000 010 962 ÷ 2 = 505 050 500 005 481 + 0;
- 505 050 500 005 481 ÷ 2 = 252 525 250 002 740 + 1;
- 252 525 250 002 740 ÷ 2 = 126 262 625 001 370 + 0;
- 126 262 625 001 370 ÷ 2 = 63 131 312 500 685 + 0;
- 63 131 312 500 685 ÷ 2 = 31 565 656 250 342 + 1;
- 31 565 656 250 342 ÷ 2 = 15 782 828 125 171 + 0;
- 15 782 828 125 171 ÷ 2 = 7 891 414 062 585 + 1;
- 7 891 414 062 585 ÷ 2 = 3 945 707 031 292 + 1;
- 3 945 707 031 292 ÷ 2 = 1 972 853 515 646 + 0;
- 1 972 853 515 646 ÷ 2 = 986 426 757 823 + 0;
- 986 426 757 823 ÷ 2 = 493 213 378 911 + 1;
- 493 213 378 911 ÷ 2 = 246 606 689 455 + 1;
- 246 606 689 455 ÷ 2 = 123 303 344 727 + 1;
- 123 303 344 727 ÷ 2 = 61 651 672 363 + 1;
- 61 651 672 363 ÷ 2 = 30 825 836 181 + 1;
- 30 825 836 181 ÷ 2 = 15 412 918 090 + 1;
- 15 412 918 090 ÷ 2 = 7 706 459 045 + 0;
- 7 706 459 045 ÷ 2 = 3 853 229 522 + 1;
- 3 853 229 522 ÷ 2 = 1 926 614 761 + 0;
- 1 926 614 761 ÷ 2 = 963 307 380 + 1;
- 963 307 380 ÷ 2 = 481 653 690 + 0;
- 481 653 690 ÷ 2 = 240 826 845 + 0;
- 240 826 845 ÷ 2 = 120 413 422 + 1;
- 120 413 422 ÷ 2 = 60 206 711 + 0;
- 60 206 711 ÷ 2 = 30 103 355 + 1;
- 30 103 355 ÷ 2 = 15 051 677 + 1;
- 15 051 677 ÷ 2 = 7 525 838 + 1;
- 7 525 838 ÷ 2 = 3 762 919 + 0;
- 3 762 919 ÷ 2 = 1 881 459 + 1;
- 1 881 459 ÷ 2 = 940 729 + 1;
- 940 729 ÷ 2 = 470 364 + 1;
- 470 364 ÷ 2 = 235 182 + 0;
- 235 182 ÷ 2 = 117 591 + 0;
- 117 591 ÷ 2 = 58 795 + 1;
- 58 795 ÷ 2 = 29 397 + 1;
- 29 397 ÷ 2 = 14 698 + 1;
- 14 698 ÷ 2 = 7 349 + 0;
- 7 349 ÷ 2 = 3 674 + 1;
- 3 674 ÷ 2 = 1 837 + 0;
- 1 837 ÷ 2 = 918 + 1;
- 918 ÷ 2 = 459 + 0;
- 459 ÷ 2 = 229 + 1;
- 229 ÷ 2 = 114 + 1;
- 114 ÷ 2 = 57 + 0;
- 57 ÷ 2 = 28 + 1;
- 28 ÷ 2 = 14 + 0;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 010 101 000 010 962(10) = 11 1001 0110 1010 1110 0111 0111 0100 1010 1111 1100 1101 0010(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 50.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 50,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
1 010 101 000 010 962(10) Base 10 integer number converted and written as a signed binary code (in base 2):
1 010 101 000 010 962(10) = 0000 0000 0000 0011 1001 0110 1010 1110 0111 0111 0100 1010 1111 1100 1101 0010
Spaces were used to group digits: for binary, by 4, for decimal, by 3.