What are the required steps to convert base 10 integer
number 1 001 110 010 000 043 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 001 110 010 000 043 ÷ 2 = 500 555 005 000 021 + 1;
- 500 555 005 000 021 ÷ 2 = 250 277 502 500 010 + 1;
- 250 277 502 500 010 ÷ 2 = 125 138 751 250 005 + 0;
- 125 138 751 250 005 ÷ 2 = 62 569 375 625 002 + 1;
- 62 569 375 625 002 ÷ 2 = 31 284 687 812 501 + 0;
- 31 284 687 812 501 ÷ 2 = 15 642 343 906 250 + 1;
- 15 642 343 906 250 ÷ 2 = 7 821 171 953 125 + 0;
- 7 821 171 953 125 ÷ 2 = 3 910 585 976 562 + 1;
- 3 910 585 976 562 ÷ 2 = 1 955 292 988 281 + 0;
- 1 955 292 988 281 ÷ 2 = 977 646 494 140 + 1;
- 977 646 494 140 ÷ 2 = 488 823 247 070 + 0;
- 488 823 247 070 ÷ 2 = 244 411 623 535 + 0;
- 244 411 623 535 ÷ 2 = 122 205 811 767 + 1;
- 122 205 811 767 ÷ 2 = 61 102 905 883 + 1;
- 61 102 905 883 ÷ 2 = 30 551 452 941 + 1;
- 30 551 452 941 ÷ 2 = 15 275 726 470 + 1;
- 15 275 726 470 ÷ 2 = 7 637 863 235 + 0;
- 7 637 863 235 ÷ 2 = 3 818 931 617 + 1;
- 3 818 931 617 ÷ 2 = 1 909 465 808 + 1;
- 1 909 465 808 ÷ 2 = 954 732 904 + 0;
- 954 732 904 ÷ 2 = 477 366 452 + 0;
- 477 366 452 ÷ 2 = 238 683 226 + 0;
- 238 683 226 ÷ 2 = 119 341 613 + 0;
- 119 341 613 ÷ 2 = 59 670 806 + 1;
- 59 670 806 ÷ 2 = 29 835 403 + 0;
- 29 835 403 ÷ 2 = 14 917 701 + 1;
- 14 917 701 ÷ 2 = 7 458 850 + 1;
- 7 458 850 ÷ 2 = 3 729 425 + 0;
- 3 729 425 ÷ 2 = 1 864 712 + 1;
- 1 864 712 ÷ 2 = 932 356 + 0;
- 932 356 ÷ 2 = 466 178 + 0;
- 466 178 ÷ 2 = 233 089 + 0;
- 233 089 ÷ 2 = 116 544 + 1;
- 116 544 ÷ 2 = 58 272 + 0;
- 58 272 ÷ 2 = 29 136 + 0;
- 29 136 ÷ 2 = 14 568 + 0;
- 14 568 ÷ 2 = 7 284 + 0;
- 7 284 ÷ 2 = 3 642 + 0;
- 3 642 ÷ 2 = 1 821 + 0;
- 1 821 ÷ 2 = 910 + 1;
- 910 ÷ 2 = 455 + 0;
- 455 ÷ 2 = 227 + 1;
- 227 ÷ 2 = 113 + 1;
- 113 ÷ 2 = 56 + 1;
- 56 ÷ 2 = 28 + 0;
- 28 ÷ 2 = 14 + 0;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 001 110 010 000 043(10) = 11 1000 1110 1000 0001 0001 0110 1000 0110 1111 0010 1010 1011(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 50.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 50,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
1 001 110 010 000 043(10) Base 10 integer number converted and written as a signed binary code (in base 2):
1 001 110 010 000 043(10) = 0000 0000 0000 0011 1000 1110 1000 0001 0001 0110 1000 0110 1111 0010 1010 1011
Spaces were used to group digits: for binary, by 4, for decimal, by 3.