What are the required steps to convert base 10 integer
number 10 001 111 000 525 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 10 001 111 000 525 ÷ 2 = 5 000 555 500 262 + 1;
- 5 000 555 500 262 ÷ 2 = 2 500 277 750 131 + 0;
- 2 500 277 750 131 ÷ 2 = 1 250 138 875 065 + 1;
- 1 250 138 875 065 ÷ 2 = 625 069 437 532 + 1;
- 625 069 437 532 ÷ 2 = 312 534 718 766 + 0;
- 312 534 718 766 ÷ 2 = 156 267 359 383 + 0;
- 156 267 359 383 ÷ 2 = 78 133 679 691 + 1;
- 78 133 679 691 ÷ 2 = 39 066 839 845 + 1;
- 39 066 839 845 ÷ 2 = 19 533 419 922 + 1;
- 19 533 419 922 ÷ 2 = 9 766 709 961 + 0;
- 9 766 709 961 ÷ 2 = 4 883 354 980 + 1;
- 4 883 354 980 ÷ 2 = 2 441 677 490 + 0;
- 2 441 677 490 ÷ 2 = 1 220 838 745 + 0;
- 1 220 838 745 ÷ 2 = 610 419 372 + 1;
- 610 419 372 ÷ 2 = 305 209 686 + 0;
- 305 209 686 ÷ 2 = 152 604 843 + 0;
- 152 604 843 ÷ 2 = 76 302 421 + 1;
- 76 302 421 ÷ 2 = 38 151 210 + 1;
- 38 151 210 ÷ 2 = 19 075 605 + 0;
- 19 075 605 ÷ 2 = 9 537 802 + 1;
- 9 537 802 ÷ 2 = 4 768 901 + 0;
- 4 768 901 ÷ 2 = 2 384 450 + 1;
- 2 384 450 ÷ 2 = 1 192 225 + 0;
- 1 192 225 ÷ 2 = 596 112 + 1;
- 596 112 ÷ 2 = 298 056 + 0;
- 298 056 ÷ 2 = 149 028 + 0;
- 149 028 ÷ 2 = 74 514 + 0;
- 74 514 ÷ 2 = 37 257 + 0;
- 37 257 ÷ 2 = 18 628 + 1;
- 18 628 ÷ 2 = 9 314 + 0;
- 9 314 ÷ 2 = 4 657 + 0;
- 4 657 ÷ 2 = 2 328 + 1;
- 2 328 ÷ 2 = 1 164 + 0;
- 1 164 ÷ 2 = 582 + 0;
- 582 ÷ 2 = 291 + 0;
- 291 ÷ 2 = 145 + 1;
- 145 ÷ 2 = 72 + 1;
- 72 ÷ 2 = 36 + 0;
- 36 ÷ 2 = 18 + 0;
- 18 ÷ 2 = 9 + 0;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
10 001 111 000 525(10) = 1001 0001 1000 1001 0000 1010 1011 0010 0101 1100 1101(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 44.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 44,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
10 001 111 000 525(10) Base 10 integer number converted and written as a signed binary code (in base 2):
10 001 111 000 525(10) = 0000 0000 0000 0000 0000 1001 0001 1000 1001 0000 1010 1011 0010 0101 1100 1101
Spaces were used to group digits: for binary, by 4, for decimal, by 3.