What are the required steps to convert base 10 integer
number -10 654 388 380 158 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Start with the positive version of the number:
|-10 654 388 380 158| = 10 654 388 380 158
2. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 10 654 388 380 158 ÷ 2 = 5 327 194 190 079 + 0;
- 5 327 194 190 079 ÷ 2 = 2 663 597 095 039 + 1;
- 2 663 597 095 039 ÷ 2 = 1 331 798 547 519 + 1;
- 1 331 798 547 519 ÷ 2 = 665 899 273 759 + 1;
- 665 899 273 759 ÷ 2 = 332 949 636 879 + 1;
- 332 949 636 879 ÷ 2 = 166 474 818 439 + 1;
- 166 474 818 439 ÷ 2 = 83 237 409 219 + 1;
- 83 237 409 219 ÷ 2 = 41 618 704 609 + 1;
- 41 618 704 609 ÷ 2 = 20 809 352 304 + 1;
- 20 809 352 304 ÷ 2 = 10 404 676 152 + 0;
- 10 404 676 152 ÷ 2 = 5 202 338 076 + 0;
- 5 202 338 076 ÷ 2 = 2 601 169 038 + 0;
- 2 601 169 038 ÷ 2 = 1 300 584 519 + 0;
- 1 300 584 519 ÷ 2 = 650 292 259 + 1;
- 650 292 259 ÷ 2 = 325 146 129 + 1;
- 325 146 129 ÷ 2 = 162 573 064 + 1;
- 162 573 064 ÷ 2 = 81 286 532 + 0;
- 81 286 532 ÷ 2 = 40 643 266 + 0;
- 40 643 266 ÷ 2 = 20 321 633 + 0;
- 20 321 633 ÷ 2 = 10 160 816 + 1;
- 10 160 816 ÷ 2 = 5 080 408 + 0;
- 5 080 408 ÷ 2 = 2 540 204 + 0;
- 2 540 204 ÷ 2 = 1 270 102 + 0;
- 1 270 102 ÷ 2 = 635 051 + 0;
- 635 051 ÷ 2 = 317 525 + 1;
- 317 525 ÷ 2 = 158 762 + 1;
- 158 762 ÷ 2 = 79 381 + 0;
- 79 381 ÷ 2 = 39 690 + 1;
- 39 690 ÷ 2 = 19 845 + 0;
- 19 845 ÷ 2 = 9 922 + 1;
- 9 922 ÷ 2 = 4 961 + 0;
- 4 961 ÷ 2 = 2 480 + 1;
- 2 480 ÷ 2 = 1 240 + 0;
- 1 240 ÷ 2 = 620 + 0;
- 620 ÷ 2 = 310 + 0;
- 310 ÷ 2 = 155 + 0;
- 155 ÷ 2 = 77 + 1;
- 77 ÷ 2 = 38 + 1;
- 38 ÷ 2 = 19 + 0;
- 19 ÷ 2 = 9 + 1;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
3. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
10 654 388 380 158(10) = 1001 1011 0000 1010 1011 0000 1000 1110 0001 1111 1110(2)
4. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 44.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 44,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
5. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
10 654 388 380 158(10) = 0000 0000 0000 0000 0000 1001 1011 0000 1010 1011 0000 1000 1110 0001 1111 1110
6. Get the negative integer number representation:
To get the negative integer number representation on 64 bits (8 Bytes),
... change the first bit (the leftmost), from 0 to 1...
-10 654 388 380 158(10) Base 10 integer number converted and written as a signed binary code (in base 2):
-10 654 388 380 158(10) = 1000 0000 0000 0000 0000 1001 1011 0000 1010 1011 0000 1000 1110 0001 1111 1110
Spaces were used to group digits: for binary, by 4, for decimal, by 3.