1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 9 999 999 800 000 055 ÷ 2 = 4 999 999 900 000 027 + 1;
- 4 999 999 900 000 027 ÷ 2 = 2 499 999 950 000 013 + 1;
- 2 499 999 950 000 013 ÷ 2 = 1 249 999 975 000 006 + 1;
- 1 249 999 975 000 006 ÷ 2 = 624 999 987 500 003 + 0;
- 624 999 987 500 003 ÷ 2 = 312 499 993 750 001 + 1;
- 312 499 993 750 001 ÷ 2 = 156 249 996 875 000 + 1;
- 156 249 996 875 000 ÷ 2 = 78 124 998 437 500 + 0;
- 78 124 998 437 500 ÷ 2 = 39 062 499 218 750 + 0;
- 39 062 499 218 750 ÷ 2 = 19 531 249 609 375 + 0;
- 19 531 249 609 375 ÷ 2 = 9 765 624 804 687 + 1;
- 9 765 624 804 687 ÷ 2 = 4 882 812 402 343 + 1;
- 4 882 812 402 343 ÷ 2 = 2 441 406 201 171 + 1;
- 2 441 406 201 171 ÷ 2 = 1 220 703 100 585 + 1;
- 1 220 703 100 585 ÷ 2 = 610 351 550 292 + 1;
- 610 351 550 292 ÷ 2 = 305 175 775 146 + 0;
- 305 175 775 146 ÷ 2 = 152 587 887 573 + 0;
- 152 587 887 573 ÷ 2 = 76 293 943 786 + 1;
- 76 293 943 786 ÷ 2 = 38 146 971 893 + 0;
- 38 146 971 893 ÷ 2 = 19 073 485 946 + 1;
- 19 073 485 946 ÷ 2 = 9 536 742 973 + 0;
- 9 536 742 973 ÷ 2 = 4 768 371 486 + 1;
- 4 768 371 486 ÷ 2 = 2 384 185 743 + 0;
- 2 384 185 743 ÷ 2 = 1 192 092 871 + 1;
- 1 192 092 871 ÷ 2 = 596 046 435 + 1;
- 596 046 435 ÷ 2 = 298 023 217 + 1;
- 298 023 217 ÷ 2 = 149 011 608 + 1;
- 149 011 608 ÷ 2 = 74 505 804 + 0;
- 74 505 804 ÷ 2 = 37 252 902 + 0;
- 37 252 902 ÷ 2 = 18 626 451 + 0;
- 18 626 451 ÷ 2 = 9 313 225 + 1;
- 9 313 225 ÷ 2 = 4 656 612 + 1;
- 4 656 612 ÷ 2 = 2 328 306 + 0;
- 2 328 306 ÷ 2 = 1 164 153 + 0;
- 1 164 153 ÷ 2 = 582 076 + 1;
- 582 076 ÷ 2 = 291 038 + 0;
- 291 038 ÷ 2 = 145 519 + 0;
- 145 519 ÷ 2 = 72 759 + 1;
- 72 759 ÷ 2 = 36 379 + 1;
- 36 379 ÷ 2 = 18 189 + 1;
- 18 189 ÷ 2 = 9 094 + 1;
- 9 094 ÷ 2 = 4 547 + 0;
- 4 547 ÷ 2 = 2 273 + 1;
- 2 273 ÷ 2 = 1 136 + 1;
- 1 136 ÷ 2 = 568 + 0;
- 568 ÷ 2 = 284 + 0;
- 284 ÷ 2 = 142 + 0;
- 142 ÷ 2 = 71 + 0;
- 71 ÷ 2 = 35 + 1;
- 35 ÷ 2 = 17 + 1;
- 17 ÷ 2 = 8 + 1;
- 8 ÷ 2 = 4 + 0;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
9 999 999 800 000 055(10) = 10 0011 1000 0110 1111 0010 0110 0011 1101 0101 0011 1110 0011 0111(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 54.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) indicates the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 54,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Number 9 999 999 800 000 055(10), a signed integer number (with sign), converted from decimal system (from base 10) and written as a signed binary in two's complement representation:
Spaces were used to group digits: for binary, by 4, for decimal, by 3.