1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 999 876 543 134 ÷ 2 = 499 938 271 567 + 0;
- 499 938 271 567 ÷ 2 = 249 969 135 783 + 1;
- 249 969 135 783 ÷ 2 = 124 984 567 891 + 1;
- 124 984 567 891 ÷ 2 = 62 492 283 945 + 1;
- 62 492 283 945 ÷ 2 = 31 246 141 972 + 1;
- 31 246 141 972 ÷ 2 = 15 623 070 986 + 0;
- 15 623 070 986 ÷ 2 = 7 811 535 493 + 0;
- 7 811 535 493 ÷ 2 = 3 905 767 746 + 1;
- 3 905 767 746 ÷ 2 = 1 952 883 873 + 0;
- 1 952 883 873 ÷ 2 = 976 441 936 + 1;
- 976 441 936 ÷ 2 = 488 220 968 + 0;
- 488 220 968 ÷ 2 = 244 110 484 + 0;
- 244 110 484 ÷ 2 = 122 055 242 + 0;
- 122 055 242 ÷ 2 = 61 027 621 + 0;
- 61 027 621 ÷ 2 = 30 513 810 + 1;
- 30 513 810 ÷ 2 = 15 256 905 + 0;
- 15 256 905 ÷ 2 = 7 628 452 + 1;
- 7 628 452 ÷ 2 = 3 814 226 + 0;
- 3 814 226 ÷ 2 = 1 907 113 + 0;
- 1 907 113 ÷ 2 = 953 556 + 1;
- 953 556 ÷ 2 = 476 778 + 0;
- 476 778 ÷ 2 = 238 389 + 0;
- 238 389 ÷ 2 = 119 194 + 1;
- 119 194 ÷ 2 = 59 597 + 0;
- 59 597 ÷ 2 = 29 798 + 1;
- 29 798 ÷ 2 = 14 899 + 0;
- 14 899 ÷ 2 = 7 449 + 1;
- 7 449 ÷ 2 = 3 724 + 1;
- 3 724 ÷ 2 = 1 862 + 0;
- 1 862 ÷ 2 = 931 + 0;
- 931 ÷ 2 = 465 + 1;
- 465 ÷ 2 = 232 + 1;
- 232 ÷ 2 = 116 + 0;
- 116 ÷ 2 = 58 + 0;
- 58 ÷ 2 = 29 + 0;
- 29 ÷ 2 = 14 + 1;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
999 876 543 134(10) = 1110 1000 1100 1101 0100 1001 0100 0010 1001 1110(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 40.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) indicates the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 40,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Number 999 876 543 134(10), a signed integer number (with sign), converted from decimal system (from base 10) and written as a signed binary in two's complement representation:
Spaces were used to group digits: for binary, by 4, for decimal, by 3.