1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 111 000 101 001 496 ÷ 2 = 55 500 050 500 748 + 0;
- 55 500 050 500 748 ÷ 2 = 27 750 025 250 374 + 0;
- 27 750 025 250 374 ÷ 2 = 13 875 012 625 187 + 0;
- 13 875 012 625 187 ÷ 2 = 6 937 506 312 593 + 1;
- 6 937 506 312 593 ÷ 2 = 3 468 753 156 296 + 1;
- 3 468 753 156 296 ÷ 2 = 1 734 376 578 148 + 0;
- 1 734 376 578 148 ÷ 2 = 867 188 289 074 + 0;
- 867 188 289 074 ÷ 2 = 433 594 144 537 + 0;
- 433 594 144 537 ÷ 2 = 216 797 072 268 + 1;
- 216 797 072 268 ÷ 2 = 108 398 536 134 + 0;
- 108 398 536 134 ÷ 2 = 54 199 268 067 + 0;
- 54 199 268 067 ÷ 2 = 27 099 634 033 + 1;
- 27 099 634 033 ÷ 2 = 13 549 817 016 + 1;
- 13 549 817 016 ÷ 2 = 6 774 908 508 + 0;
- 6 774 908 508 ÷ 2 = 3 387 454 254 + 0;
- 3 387 454 254 ÷ 2 = 1 693 727 127 + 0;
- 1 693 727 127 ÷ 2 = 846 863 563 + 1;
- 846 863 563 ÷ 2 = 423 431 781 + 1;
- 423 431 781 ÷ 2 = 211 715 890 + 1;
- 211 715 890 ÷ 2 = 105 857 945 + 0;
- 105 857 945 ÷ 2 = 52 928 972 + 1;
- 52 928 972 ÷ 2 = 26 464 486 + 0;
- 26 464 486 ÷ 2 = 13 232 243 + 0;
- 13 232 243 ÷ 2 = 6 616 121 + 1;
- 6 616 121 ÷ 2 = 3 308 060 + 1;
- 3 308 060 ÷ 2 = 1 654 030 + 0;
- 1 654 030 ÷ 2 = 827 015 + 0;
- 827 015 ÷ 2 = 413 507 + 1;
- 413 507 ÷ 2 = 206 753 + 1;
- 206 753 ÷ 2 = 103 376 + 1;
- 103 376 ÷ 2 = 51 688 + 0;
- 51 688 ÷ 2 = 25 844 + 0;
- 25 844 ÷ 2 = 12 922 + 0;
- 12 922 ÷ 2 = 6 461 + 0;
- 6 461 ÷ 2 = 3 230 + 1;
- 3 230 ÷ 2 = 1 615 + 0;
- 1 615 ÷ 2 = 807 + 1;
- 807 ÷ 2 = 403 + 1;
- 403 ÷ 2 = 201 + 1;
- 201 ÷ 2 = 100 + 1;
- 100 ÷ 2 = 50 + 0;
- 50 ÷ 2 = 25 + 0;
- 25 ÷ 2 = 12 + 1;
- 12 ÷ 2 = 6 + 0;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
111 000 101 001 496(10) = 110 0100 1111 0100 0011 1001 1001 0111 0001 1001 0001 1000(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 47.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 47,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 111 000 101 001 496(10) converted to signed binary in two's complement representation:
Spaces were used to group digits: for binary, by 4, for decimal, by 3.