1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 4 067 ÷ 2 = 2 033 + 1;
- 2 033 ÷ 2 = 1 016 + 1;
- 1 016 ÷ 2 = 508 + 0;
- 508 ÷ 2 = 254 + 0;
- 254 ÷ 2 = 127 + 0;
- 127 ÷ 2 = 63 + 1;
- 63 ÷ 2 = 31 + 1;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
4 067(10) = 1111 1110 0011(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 12.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 12,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 16.
4. Get the positive binary computer representation on 16 bits (2 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 16.
Number 4 067(10), a signed integer number (with sign), converted from decimal system (from base 10) and written as a signed binary in one's complement representation: