1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 352 773 814 733 ÷ 2 = 176 386 907 366 + 1;
- 176 386 907 366 ÷ 2 = 88 193 453 683 + 0;
- 88 193 453 683 ÷ 2 = 44 096 726 841 + 1;
- 44 096 726 841 ÷ 2 = 22 048 363 420 + 1;
- 22 048 363 420 ÷ 2 = 11 024 181 710 + 0;
- 11 024 181 710 ÷ 2 = 5 512 090 855 + 0;
- 5 512 090 855 ÷ 2 = 2 756 045 427 + 1;
- 2 756 045 427 ÷ 2 = 1 378 022 713 + 1;
- 1 378 022 713 ÷ 2 = 689 011 356 + 1;
- 689 011 356 ÷ 2 = 344 505 678 + 0;
- 344 505 678 ÷ 2 = 172 252 839 + 0;
- 172 252 839 ÷ 2 = 86 126 419 + 1;
- 86 126 419 ÷ 2 = 43 063 209 + 1;
- 43 063 209 ÷ 2 = 21 531 604 + 1;
- 21 531 604 ÷ 2 = 10 765 802 + 0;
- 10 765 802 ÷ 2 = 5 382 901 + 0;
- 5 382 901 ÷ 2 = 2 691 450 + 1;
- 2 691 450 ÷ 2 = 1 345 725 + 0;
- 1 345 725 ÷ 2 = 672 862 + 1;
- 672 862 ÷ 2 = 336 431 + 0;
- 336 431 ÷ 2 = 168 215 + 1;
- 168 215 ÷ 2 = 84 107 + 1;
- 84 107 ÷ 2 = 42 053 + 1;
- 42 053 ÷ 2 = 21 026 + 1;
- 21 026 ÷ 2 = 10 513 + 0;
- 10 513 ÷ 2 = 5 256 + 1;
- 5 256 ÷ 2 = 2 628 + 0;
- 2 628 ÷ 2 = 1 314 + 0;
- 1 314 ÷ 2 = 657 + 0;
- 657 ÷ 2 = 328 + 1;
- 328 ÷ 2 = 164 + 0;
- 164 ÷ 2 = 82 + 0;
- 82 ÷ 2 = 41 + 0;
- 41 ÷ 2 = 20 + 1;
- 20 ÷ 2 = 10 + 0;
- 10 ÷ 2 = 5 + 0;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
352 773 814 733(10) = 101 0010 0010 0010 1111 0101 0011 1001 1100 1101(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 39.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 39,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 352 773 814 733(10) converted to signed binary in one's complement representation: