1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 2 447 447 801 ÷ 2 = 1 223 723 900 + 1;
- 1 223 723 900 ÷ 2 = 611 861 950 + 0;
- 611 861 950 ÷ 2 = 305 930 975 + 0;
- 305 930 975 ÷ 2 = 152 965 487 + 1;
- 152 965 487 ÷ 2 = 76 482 743 + 1;
- 76 482 743 ÷ 2 = 38 241 371 + 1;
- 38 241 371 ÷ 2 = 19 120 685 + 1;
- 19 120 685 ÷ 2 = 9 560 342 + 1;
- 9 560 342 ÷ 2 = 4 780 171 + 0;
- 4 780 171 ÷ 2 = 2 390 085 + 1;
- 2 390 085 ÷ 2 = 1 195 042 + 1;
- 1 195 042 ÷ 2 = 597 521 + 0;
- 597 521 ÷ 2 = 298 760 + 1;
- 298 760 ÷ 2 = 149 380 + 0;
- 149 380 ÷ 2 = 74 690 + 0;
- 74 690 ÷ 2 = 37 345 + 0;
- 37 345 ÷ 2 = 18 672 + 1;
- 18 672 ÷ 2 = 9 336 + 0;
- 9 336 ÷ 2 = 4 668 + 0;
- 4 668 ÷ 2 = 2 334 + 0;
- 2 334 ÷ 2 = 1 167 + 0;
- 1 167 ÷ 2 = 583 + 1;
- 583 ÷ 2 = 291 + 1;
- 291 ÷ 2 = 145 + 1;
- 145 ÷ 2 = 72 + 1;
- 72 ÷ 2 = 36 + 0;
- 36 ÷ 2 = 18 + 0;
- 18 ÷ 2 = 9 + 0;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
2 447 447 801(10) = 1001 0001 1110 0001 0001 0110 1111 1001(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 32.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 32,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 2 447 447 801(10) converted to signed binary in one's complement representation: