1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 150 714 110 339 ÷ 2 = 75 357 055 169 + 1;
- 75 357 055 169 ÷ 2 = 37 678 527 584 + 1;
- 37 678 527 584 ÷ 2 = 18 839 263 792 + 0;
- 18 839 263 792 ÷ 2 = 9 419 631 896 + 0;
- 9 419 631 896 ÷ 2 = 4 709 815 948 + 0;
- 4 709 815 948 ÷ 2 = 2 354 907 974 + 0;
- 2 354 907 974 ÷ 2 = 1 177 453 987 + 0;
- 1 177 453 987 ÷ 2 = 588 726 993 + 1;
- 588 726 993 ÷ 2 = 294 363 496 + 1;
- 294 363 496 ÷ 2 = 147 181 748 + 0;
- 147 181 748 ÷ 2 = 73 590 874 + 0;
- 73 590 874 ÷ 2 = 36 795 437 + 0;
- 36 795 437 ÷ 2 = 18 397 718 + 1;
- 18 397 718 ÷ 2 = 9 198 859 + 0;
- 9 198 859 ÷ 2 = 4 599 429 + 1;
- 4 599 429 ÷ 2 = 2 299 714 + 1;
- 2 299 714 ÷ 2 = 1 149 857 + 0;
- 1 149 857 ÷ 2 = 574 928 + 1;
- 574 928 ÷ 2 = 287 464 + 0;
- 287 464 ÷ 2 = 143 732 + 0;
- 143 732 ÷ 2 = 71 866 + 0;
- 71 866 ÷ 2 = 35 933 + 0;
- 35 933 ÷ 2 = 17 966 + 1;
- 17 966 ÷ 2 = 8 983 + 0;
- 8 983 ÷ 2 = 4 491 + 1;
- 4 491 ÷ 2 = 2 245 + 1;
- 2 245 ÷ 2 = 1 122 + 1;
- 1 122 ÷ 2 = 561 + 0;
- 561 ÷ 2 = 280 + 1;
- 280 ÷ 2 = 140 + 0;
- 140 ÷ 2 = 70 + 0;
- 70 ÷ 2 = 35 + 0;
- 35 ÷ 2 = 17 + 1;
- 17 ÷ 2 = 8 + 1;
- 8 ÷ 2 = 4 + 0;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
150 714 110 339(10) = 10 0011 0001 0111 0100 0010 1101 0001 1000 0011(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 38.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 38,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 150 714 110 339(10) converted to signed binary in one's complement representation: