1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 241 512 829 ÷ 2 = 620 756 414 + 1;
- 620 756 414 ÷ 2 = 310 378 207 + 0;
- 310 378 207 ÷ 2 = 155 189 103 + 1;
- 155 189 103 ÷ 2 = 77 594 551 + 1;
- 77 594 551 ÷ 2 = 38 797 275 + 1;
- 38 797 275 ÷ 2 = 19 398 637 + 1;
- 19 398 637 ÷ 2 = 9 699 318 + 1;
- 9 699 318 ÷ 2 = 4 849 659 + 0;
- 4 849 659 ÷ 2 = 2 424 829 + 1;
- 2 424 829 ÷ 2 = 1 212 414 + 1;
- 1 212 414 ÷ 2 = 606 207 + 0;
- 606 207 ÷ 2 = 303 103 + 1;
- 303 103 ÷ 2 = 151 551 + 1;
- 151 551 ÷ 2 = 75 775 + 1;
- 75 775 ÷ 2 = 37 887 + 1;
- 37 887 ÷ 2 = 18 943 + 1;
- 18 943 ÷ 2 = 9 471 + 1;
- 9 471 ÷ 2 = 4 735 + 1;
- 4 735 ÷ 2 = 2 367 + 1;
- 2 367 ÷ 2 = 1 183 + 1;
- 1 183 ÷ 2 = 591 + 1;
- 591 ÷ 2 = 295 + 1;
- 295 ÷ 2 = 147 + 1;
- 147 ÷ 2 = 73 + 1;
- 73 ÷ 2 = 36 + 1;
- 36 ÷ 2 = 18 + 0;
- 18 ÷ 2 = 9 + 0;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 241 512 829(10) = 100 1001 1111 1111 1111 1011 0111 1101(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 31.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 31,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 32.
4. Get the positive binary computer representation on 32 bits (4 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 32.
Decimal Number 1 241 512 829(10) converted to signed binary in one's complement representation: