1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 111 110 101 100 140 ÷ 2 = 555 555 050 550 070 + 0;
- 555 555 050 550 070 ÷ 2 = 277 777 525 275 035 + 0;
- 277 777 525 275 035 ÷ 2 = 138 888 762 637 517 + 1;
- 138 888 762 637 517 ÷ 2 = 69 444 381 318 758 + 1;
- 69 444 381 318 758 ÷ 2 = 34 722 190 659 379 + 0;
- 34 722 190 659 379 ÷ 2 = 17 361 095 329 689 + 1;
- 17 361 095 329 689 ÷ 2 = 8 680 547 664 844 + 1;
- 8 680 547 664 844 ÷ 2 = 4 340 273 832 422 + 0;
- 4 340 273 832 422 ÷ 2 = 2 170 136 916 211 + 0;
- 2 170 136 916 211 ÷ 2 = 1 085 068 458 105 + 1;
- 1 085 068 458 105 ÷ 2 = 542 534 229 052 + 1;
- 542 534 229 052 ÷ 2 = 271 267 114 526 + 0;
- 271 267 114 526 ÷ 2 = 135 633 557 263 + 0;
- 135 633 557 263 ÷ 2 = 67 816 778 631 + 1;
- 67 816 778 631 ÷ 2 = 33 908 389 315 + 1;
- 33 908 389 315 ÷ 2 = 16 954 194 657 + 1;
- 16 954 194 657 ÷ 2 = 8 477 097 328 + 1;
- 8 477 097 328 ÷ 2 = 4 238 548 664 + 0;
- 4 238 548 664 ÷ 2 = 2 119 274 332 + 0;
- 2 119 274 332 ÷ 2 = 1 059 637 166 + 0;
- 1 059 637 166 ÷ 2 = 529 818 583 + 0;
- 529 818 583 ÷ 2 = 264 909 291 + 1;
- 264 909 291 ÷ 2 = 132 454 645 + 1;
- 132 454 645 ÷ 2 = 66 227 322 + 1;
- 66 227 322 ÷ 2 = 33 113 661 + 0;
- 33 113 661 ÷ 2 = 16 556 830 + 1;
- 16 556 830 ÷ 2 = 8 278 415 + 0;
- 8 278 415 ÷ 2 = 4 139 207 + 1;
- 4 139 207 ÷ 2 = 2 069 603 + 1;
- 2 069 603 ÷ 2 = 1 034 801 + 1;
- 1 034 801 ÷ 2 = 517 400 + 1;
- 517 400 ÷ 2 = 258 700 + 0;
- 258 700 ÷ 2 = 129 350 + 0;
- 129 350 ÷ 2 = 64 675 + 0;
- 64 675 ÷ 2 = 32 337 + 1;
- 32 337 ÷ 2 = 16 168 + 1;
- 16 168 ÷ 2 = 8 084 + 0;
- 8 084 ÷ 2 = 4 042 + 0;
- 4 042 ÷ 2 = 2 021 + 0;
- 2 021 ÷ 2 = 1 010 + 1;
- 1 010 ÷ 2 = 505 + 0;
- 505 ÷ 2 = 252 + 1;
- 252 ÷ 2 = 126 + 0;
- 126 ÷ 2 = 63 + 0;
- 63 ÷ 2 = 31 + 1;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 111 110 101 100 140(10) = 11 1111 0010 1000 1100 0111 1010 1110 0001 1110 0110 0110 1100(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 50.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 50,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 1 111 110 101 100 140(10) converted to signed binary in one's complement representation: