1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 111 100 101 161 ÷ 2 = 55 550 050 580 + 1;
- 55 550 050 580 ÷ 2 = 27 775 025 290 + 0;
- 27 775 025 290 ÷ 2 = 13 887 512 645 + 0;
- 13 887 512 645 ÷ 2 = 6 943 756 322 + 1;
- 6 943 756 322 ÷ 2 = 3 471 878 161 + 0;
- 3 471 878 161 ÷ 2 = 1 735 939 080 + 1;
- 1 735 939 080 ÷ 2 = 867 969 540 + 0;
- 867 969 540 ÷ 2 = 433 984 770 + 0;
- 433 984 770 ÷ 2 = 216 992 385 + 0;
- 216 992 385 ÷ 2 = 108 496 192 + 1;
- 108 496 192 ÷ 2 = 54 248 096 + 0;
- 54 248 096 ÷ 2 = 27 124 048 + 0;
- 27 124 048 ÷ 2 = 13 562 024 + 0;
- 13 562 024 ÷ 2 = 6 781 012 + 0;
- 6 781 012 ÷ 2 = 3 390 506 + 0;
- 3 390 506 ÷ 2 = 1 695 253 + 0;
- 1 695 253 ÷ 2 = 847 626 + 1;
- 847 626 ÷ 2 = 423 813 + 0;
- 423 813 ÷ 2 = 211 906 + 1;
- 211 906 ÷ 2 = 105 953 + 0;
- 105 953 ÷ 2 = 52 976 + 1;
- 52 976 ÷ 2 = 26 488 + 0;
- 26 488 ÷ 2 = 13 244 + 0;
- 13 244 ÷ 2 = 6 622 + 0;
- 6 622 ÷ 2 = 3 311 + 0;
- 3 311 ÷ 2 = 1 655 + 1;
- 1 655 ÷ 2 = 827 + 1;
- 827 ÷ 2 = 413 + 1;
- 413 ÷ 2 = 206 + 1;
- 206 ÷ 2 = 103 + 0;
- 103 ÷ 2 = 51 + 1;
- 51 ÷ 2 = 25 + 1;
- 25 ÷ 2 = 12 + 1;
- 12 ÷ 2 = 6 + 0;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
111 100 101 161(10) = 1 1001 1101 1110 0001 0101 0000 0010 0010 1001(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 37.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 37,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 111 100 101 161(10) converted to signed binary in one's complement representation: