1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 111 000 111 099 498 ÷ 2 = 555 500 055 549 749 + 0;
- 555 500 055 549 749 ÷ 2 = 277 750 027 774 874 + 1;
- 277 750 027 774 874 ÷ 2 = 138 875 013 887 437 + 0;
- 138 875 013 887 437 ÷ 2 = 69 437 506 943 718 + 1;
- 69 437 506 943 718 ÷ 2 = 34 718 753 471 859 + 0;
- 34 718 753 471 859 ÷ 2 = 17 359 376 735 929 + 1;
- 17 359 376 735 929 ÷ 2 = 8 679 688 367 964 + 1;
- 8 679 688 367 964 ÷ 2 = 4 339 844 183 982 + 0;
- 4 339 844 183 982 ÷ 2 = 2 169 922 091 991 + 0;
- 2 169 922 091 991 ÷ 2 = 1 084 961 045 995 + 1;
- 1 084 961 045 995 ÷ 2 = 542 480 522 997 + 1;
- 542 480 522 997 ÷ 2 = 271 240 261 498 + 1;
- 271 240 261 498 ÷ 2 = 135 620 130 749 + 0;
- 135 620 130 749 ÷ 2 = 67 810 065 374 + 1;
- 67 810 065 374 ÷ 2 = 33 905 032 687 + 0;
- 33 905 032 687 ÷ 2 = 16 952 516 343 + 1;
- 16 952 516 343 ÷ 2 = 8 476 258 171 + 1;
- 8 476 258 171 ÷ 2 = 4 238 129 085 + 1;
- 4 238 129 085 ÷ 2 = 2 119 064 542 + 1;
- 2 119 064 542 ÷ 2 = 1 059 532 271 + 0;
- 1 059 532 271 ÷ 2 = 529 766 135 + 1;
- 529 766 135 ÷ 2 = 264 883 067 + 1;
- 264 883 067 ÷ 2 = 132 441 533 + 1;
- 132 441 533 ÷ 2 = 66 220 766 + 1;
- 66 220 766 ÷ 2 = 33 110 383 + 0;
- 33 110 383 ÷ 2 = 16 555 191 + 1;
- 16 555 191 ÷ 2 = 8 277 595 + 1;
- 8 277 595 ÷ 2 = 4 138 797 + 1;
- 4 138 797 ÷ 2 = 2 069 398 + 1;
- 2 069 398 ÷ 2 = 1 034 699 + 0;
- 1 034 699 ÷ 2 = 517 349 + 1;
- 517 349 ÷ 2 = 258 674 + 1;
- 258 674 ÷ 2 = 129 337 + 0;
- 129 337 ÷ 2 = 64 668 + 1;
- 64 668 ÷ 2 = 32 334 + 0;
- 32 334 ÷ 2 = 16 167 + 0;
- 16 167 ÷ 2 = 8 083 + 1;
- 8 083 ÷ 2 = 4 041 + 1;
- 4 041 ÷ 2 = 2 020 + 1;
- 2 020 ÷ 2 = 1 010 + 0;
- 1 010 ÷ 2 = 505 + 0;
- 505 ÷ 2 = 252 + 1;
- 252 ÷ 2 = 126 + 0;
- 126 ÷ 2 = 63 + 0;
- 63 ÷ 2 = 31 + 1;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 111 000 111 099 498(10) = 11 1111 0010 0111 0010 1101 1110 1111 0111 1010 1110 0110 1010(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 50.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 50,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 1 111 000 111 099 498(10) converted to signed binary in one's complement representation: