1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 011 109 999 959 ÷ 2 = 505 554 999 979 + 1;
- 505 554 999 979 ÷ 2 = 252 777 499 989 + 1;
- 252 777 499 989 ÷ 2 = 126 388 749 994 + 1;
- 126 388 749 994 ÷ 2 = 63 194 374 997 + 0;
- 63 194 374 997 ÷ 2 = 31 597 187 498 + 1;
- 31 597 187 498 ÷ 2 = 15 798 593 749 + 0;
- 15 798 593 749 ÷ 2 = 7 899 296 874 + 1;
- 7 899 296 874 ÷ 2 = 3 949 648 437 + 0;
- 3 949 648 437 ÷ 2 = 1 974 824 218 + 1;
- 1 974 824 218 ÷ 2 = 987 412 109 + 0;
- 987 412 109 ÷ 2 = 493 706 054 + 1;
- 493 706 054 ÷ 2 = 246 853 027 + 0;
- 246 853 027 ÷ 2 = 123 426 513 + 1;
- 123 426 513 ÷ 2 = 61 713 256 + 1;
- 61 713 256 ÷ 2 = 30 856 628 + 0;
- 30 856 628 ÷ 2 = 15 428 314 + 0;
- 15 428 314 ÷ 2 = 7 714 157 + 0;
- 7 714 157 ÷ 2 = 3 857 078 + 1;
- 3 857 078 ÷ 2 = 1 928 539 + 0;
- 1 928 539 ÷ 2 = 964 269 + 1;
- 964 269 ÷ 2 = 482 134 + 1;
- 482 134 ÷ 2 = 241 067 + 0;
- 241 067 ÷ 2 = 120 533 + 1;
- 120 533 ÷ 2 = 60 266 + 1;
- 60 266 ÷ 2 = 30 133 + 0;
- 30 133 ÷ 2 = 15 066 + 1;
- 15 066 ÷ 2 = 7 533 + 0;
- 7 533 ÷ 2 = 3 766 + 1;
- 3 766 ÷ 2 = 1 883 + 0;
- 1 883 ÷ 2 = 941 + 1;
- 941 ÷ 2 = 470 + 1;
- 470 ÷ 2 = 235 + 0;
- 235 ÷ 2 = 117 + 1;
- 117 ÷ 2 = 58 + 1;
- 58 ÷ 2 = 29 + 0;
- 29 ÷ 2 = 14 + 1;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 011 109 999 959(10) = 1110 1011 0110 1010 1101 1010 0011 0101 0101 0111(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 40.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 40,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 1 011 109 999 959(10) converted to signed binary in one's complement representation: