1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 101 110 100 110 184 ÷ 2 = 50 555 050 055 092 + 0;
- 50 555 050 055 092 ÷ 2 = 25 277 525 027 546 + 0;
- 25 277 525 027 546 ÷ 2 = 12 638 762 513 773 + 0;
- 12 638 762 513 773 ÷ 2 = 6 319 381 256 886 + 1;
- 6 319 381 256 886 ÷ 2 = 3 159 690 628 443 + 0;
- 3 159 690 628 443 ÷ 2 = 1 579 845 314 221 + 1;
- 1 579 845 314 221 ÷ 2 = 789 922 657 110 + 1;
- 789 922 657 110 ÷ 2 = 394 961 328 555 + 0;
- 394 961 328 555 ÷ 2 = 197 480 664 277 + 1;
- 197 480 664 277 ÷ 2 = 98 740 332 138 + 1;
- 98 740 332 138 ÷ 2 = 49 370 166 069 + 0;
- 49 370 166 069 ÷ 2 = 24 685 083 034 + 1;
- 24 685 083 034 ÷ 2 = 12 342 541 517 + 0;
- 12 342 541 517 ÷ 2 = 6 171 270 758 + 1;
- 6 171 270 758 ÷ 2 = 3 085 635 379 + 0;
- 3 085 635 379 ÷ 2 = 1 542 817 689 + 1;
- 1 542 817 689 ÷ 2 = 771 408 844 + 1;
- 771 408 844 ÷ 2 = 385 704 422 + 0;
- 385 704 422 ÷ 2 = 192 852 211 + 0;
- 192 852 211 ÷ 2 = 96 426 105 + 1;
- 96 426 105 ÷ 2 = 48 213 052 + 1;
- 48 213 052 ÷ 2 = 24 106 526 + 0;
- 24 106 526 ÷ 2 = 12 053 263 + 0;
- 12 053 263 ÷ 2 = 6 026 631 + 1;
- 6 026 631 ÷ 2 = 3 013 315 + 1;
- 3 013 315 ÷ 2 = 1 506 657 + 1;
- 1 506 657 ÷ 2 = 753 328 + 1;
- 753 328 ÷ 2 = 376 664 + 0;
- 376 664 ÷ 2 = 188 332 + 0;
- 188 332 ÷ 2 = 94 166 + 0;
- 94 166 ÷ 2 = 47 083 + 0;
- 47 083 ÷ 2 = 23 541 + 1;
- 23 541 ÷ 2 = 11 770 + 1;
- 11 770 ÷ 2 = 5 885 + 0;
- 5 885 ÷ 2 = 2 942 + 1;
- 2 942 ÷ 2 = 1 471 + 0;
- 1 471 ÷ 2 = 735 + 1;
- 735 ÷ 2 = 367 + 1;
- 367 ÷ 2 = 183 + 1;
- 183 ÷ 2 = 91 + 1;
- 91 ÷ 2 = 45 + 1;
- 45 ÷ 2 = 22 + 1;
- 22 ÷ 2 = 11 + 0;
- 11 ÷ 2 = 5 + 1;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
101 110 100 110 184(10) = 101 1011 1111 0101 1000 0111 1001 1001 1010 1011 0110 1000(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 47.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 47,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 101 110 100 110 184(10) converted to signed binary in one's complement representation: