1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 10 110 101 010 672 ÷ 2 = 5 055 050 505 336 + 0;
- 5 055 050 505 336 ÷ 2 = 2 527 525 252 668 + 0;
- 2 527 525 252 668 ÷ 2 = 1 263 762 626 334 + 0;
- 1 263 762 626 334 ÷ 2 = 631 881 313 167 + 0;
- 631 881 313 167 ÷ 2 = 315 940 656 583 + 1;
- 315 940 656 583 ÷ 2 = 157 970 328 291 + 1;
- 157 970 328 291 ÷ 2 = 78 985 164 145 + 1;
- 78 985 164 145 ÷ 2 = 39 492 582 072 + 1;
- 39 492 582 072 ÷ 2 = 19 746 291 036 + 0;
- 19 746 291 036 ÷ 2 = 9 873 145 518 + 0;
- 9 873 145 518 ÷ 2 = 4 936 572 759 + 0;
- 4 936 572 759 ÷ 2 = 2 468 286 379 + 1;
- 2 468 286 379 ÷ 2 = 1 234 143 189 + 1;
- 1 234 143 189 ÷ 2 = 617 071 594 + 1;
- 617 071 594 ÷ 2 = 308 535 797 + 0;
- 308 535 797 ÷ 2 = 154 267 898 + 1;
- 154 267 898 ÷ 2 = 77 133 949 + 0;
- 77 133 949 ÷ 2 = 38 566 974 + 1;
- 38 566 974 ÷ 2 = 19 283 487 + 0;
- 19 283 487 ÷ 2 = 9 641 743 + 1;
- 9 641 743 ÷ 2 = 4 820 871 + 1;
- 4 820 871 ÷ 2 = 2 410 435 + 1;
- 2 410 435 ÷ 2 = 1 205 217 + 1;
- 1 205 217 ÷ 2 = 602 608 + 1;
- 602 608 ÷ 2 = 301 304 + 0;
- 301 304 ÷ 2 = 150 652 + 0;
- 150 652 ÷ 2 = 75 326 + 0;
- 75 326 ÷ 2 = 37 663 + 0;
- 37 663 ÷ 2 = 18 831 + 1;
- 18 831 ÷ 2 = 9 415 + 1;
- 9 415 ÷ 2 = 4 707 + 1;
- 4 707 ÷ 2 = 2 353 + 1;
- 2 353 ÷ 2 = 1 176 + 1;
- 1 176 ÷ 2 = 588 + 0;
- 588 ÷ 2 = 294 + 0;
- 294 ÷ 2 = 147 + 0;
- 147 ÷ 2 = 73 + 1;
- 73 ÷ 2 = 36 + 1;
- 36 ÷ 2 = 18 + 0;
- 18 ÷ 2 = 9 + 0;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
10 110 101 010 672(10) = 1001 0011 0001 1111 0000 1111 1010 1011 1000 1111 0000(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 44.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 44,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 10 110 101 010 672(10) converted to signed binary in one's complement representation: