1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 10 100 001 109 377 ÷ 2 = 5 050 000 554 688 + 1;
- 5 050 000 554 688 ÷ 2 = 2 525 000 277 344 + 0;
- 2 525 000 277 344 ÷ 2 = 1 262 500 138 672 + 0;
- 1 262 500 138 672 ÷ 2 = 631 250 069 336 + 0;
- 631 250 069 336 ÷ 2 = 315 625 034 668 + 0;
- 315 625 034 668 ÷ 2 = 157 812 517 334 + 0;
- 157 812 517 334 ÷ 2 = 78 906 258 667 + 0;
- 78 906 258 667 ÷ 2 = 39 453 129 333 + 1;
- 39 453 129 333 ÷ 2 = 19 726 564 666 + 1;
- 19 726 564 666 ÷ 2 = 9 863 282 333 + 0;
- 9 863 282 333 ÷ 2 = 4 931 641 166 + 1;
- 4 931 641 166 ÷ 2 = 2 465 820 583 + 0;
- 2 465 820 583 ÷ 2 = 1 232 910 291 + 1;
- 1 232 910 291 ÷ 2 = 616 455 145 + 1;
- 616 455 145 ÷ 2 = 308 227 572 + 1;
- 308 227 572 ÷ 2 = 154 113 786 + 0;
- 154 113 786 ÷ 2 = 77 056 893 + 0;
- 77 056 893 ÷ 2 = 38 528 446 + 1;
- 38 528 446 ÷ 2 = 19 264 223 + 0;
- 19 264 223 ÷ 2 = 9 632 111 + 1;
- 9 632 111 ÷ 2 = 4 816 055 + 1;
- 4 816 055 ÷ 2 = 2 408 027 + 1;
- 2 408 027 ÷ 2 = 1 204 013 + 1;
- 1 204 013 ÷ 2 = 602 006 + 1;
- 602 006 ÷ 2 = 301 003 + 0;
- 301 003 ÷ 2 = 150 501 + 1;
- 150 501 ÷ 2 = 75 250 + 1;
- 75 250 ÷ 2 = 37 625 + 0;
- 37 625 ÷ 2 = 18 812 + 1;
- 18 812 ÷ 2 = 9 406 + 0;
- 9 406 ÷ 2 = 4 703 + 0;
- 4 703 ÷ 2 = 2 351 + 1;
- 2 351 ÷ 2 = 1 175 + 1;
- 1 175 ÷ 2 = 587 + 1;
- 587 ÷ 2 = 293 + 1;
- 293 ÷ 2 = 146 + 1;
- 146 ÷ 2 = 73 + 0;
- 73 ÷ 2 = 36 + 1;
- 36 ÷ 2 = 18 + 0;
- 18 ÷ 2 = 9 + 0;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
10 100 001 109 377(10) = 1001 0010 1111 1001 0110 1111 1010 0111 0101 1000 0001(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 44.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 44,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 10 100 001 109 377(10) converted to signed binary in one's complement representation: