1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 000 110 817 ÷ 2 = 500 055 408 + 1;
- 500 055 408 ÷ 2 = 250 027 704 + 0;
- 250 027 704 ÷ 2 = 125 013 852 + 0;
- 125 013 852 ÷ 2 = 62 506 926 + 0;
- 62 506 926 ÷ 2 = 31 253 463 + 0;
- 31 253 463 ÷ 2 = 15 626 731 + 1;
- 15 626 731 ÷ 2 = 7 813 365 + 1;
- 7 813 365 ÷ 2 = 3 906 682 + 1;
- 3 906 682 ÷ 2 = 1 953 341 + 0;
- 1 953 341 ÷ 2 = 976 670 + 1;
- 976 670 ÷ 2 = 488 335 + 0;
- 488 335 ÷ 2 = 244 167 + 1;
- 244 167 ÷ 2 = 122 083 + 1;
- 122 083 ÷ 2 = 61 041 + 1;
- 61 041 ÷ 2 = 30 520 + 1;
- 30 520 ÷ 2 = 15 260 + 0;
- 15 260 ÷ 2 = 7 630 + 0;
- 7 630 ÷ 2 = 3 815 + 0;
- 3 815 ÷ 2 = 1 907 + 1;
- 1 907 ÷ 2 = 953 + 1;
- 953 ÷ 2 = 476 + 1;
- 476 ÷ 2 = 238 + 0;
- 238 ÷ 2 = 119 + 0;
- 119 ÷ 2 = 59 + 1;
- 59 ÷ 2 = 29 + 1;
- 29 ÷ 2 = 14 + 1;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 000 110 817(10) = 11 1011 1001 1100 0111 1010 1110 0001(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 30.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 30,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 32.
4. Get the positive binary computer representation on 32 bits (4 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 32.
Decimal Number 1 000 110 817(10) converted to signed binary in one's complement representation: