1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 000 000 100 009 935 ÷ 2 = 500 000 050 004 967 + 1;
- 500 000 050 004 967 ÷ 2 = 250 000 025 002 483 + 1;
- 250 000 025 002 483 ÷ 2 = 125 000 012 501 241 + 1;
- 125 000 012 501 241 ÷ 2 = 62 500 006 250 620 + 1;
- 62 500 006 250 620 ÷ 2 = 31 250 003 125 310 + 0;
- 31 250 003 125 310 ÷ 2 = 15 625 001 562 655 + 0;
- 15 625 001 562 655 ÷ 2 = 7 812 500 781 327 + 1;
- 7 812 500 781 327 ÷ 2 = 3 906 250 390 663 + 1;
- 3 906 250 390 663 ÷ 2 = 1 953 125 195 331 + 1;
- 1 953 125 195 331 ÷ 2 = 976 562 597 665 + 1;
- 976 562 597 665 ÷ 2 = 488 281 298 832 + 1;
- 488 281 298 832 ÷ 2 = 244 140 649 416 + 0;
- 244 140 649 416 ÷ 2 = 122 070 324 708 + 0;
- 122 070 324 708 ÷ 2 = 61 035 162 354 + 0;
- 61 035 162 354 ÷ 2 = 30 517 581 177 + 0;
- 30 517 581 177 ÷ 2 = 15 258 790 588 + 1;
- 15 258 790 588 ÷ 2 = 7 629 395 294 + 0;
- 7 629 395 294 ÷ 2 = 3 814 697 647 + 0;
- 3 814 697 647 ÷ 2 = 1 907 348 823 + 1;
- 1 907 348 823 ÷ 2 = 953 674 411 + 1;
- 953 674 411 ÷ 2 = 476 837 205 + 1;
- 476 837 205 ÷ 2 = 238 418 602 + 1;
- 238 418 602 ÷ 2 = 119 209 301 + 0;
- 119 209 301 ÷ 2 = 59 604 650 + 1;
- 59 604 650 ÷ 2 = 29 802 325 + 0;
- 29 802 325 ÷ 2 = 14 901 162 + 1;
- 14 901 162 ÷ 2 = 7 450 581 + 0;
- 7 450 581 ÷ 2 = 3 725 290 + 1;
- 3 725 290 ÷ 2 = 1 862 645 + 0;
- 1 862 645 ÷ 2 = 931 322 + 1;
- 931 322 ÷ 2 = 465 661 + 0;
- 465 661 ÷ 2 = 232 830 + 1;
- 232 830 ÷ 2 = 116 415 + 0;
- 116 415 ÷ 2 = 58 207 + 1;
- 58 207 ÷ 2 = 29 103 + 1;
- 29 103 ÷ 2 = 14 551 + 1;
- 14 551 ÷ 2 = 7 275 + 1;
- 7 275 ÷ 2 = 3 637 + 1;
- 3 637 ÷ 2 = 1 818 + 1;
- 1 818 ÷ 2 = 909 + 0;
- 909 ÷ 2 = 454 + 1;
- 454 ÷ 2 = 227 + 0;
- 227 ÷ 2 = 113 + 1;
- 113 ÷ 2 = 56 + 1;
- 56 ÷ 2 = 28 + 0;
- 28 ÷ 2 = 14 + 0;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 000 000 100 009 935(10) = 11 1000 1101 0111 1110 1010 1010 1011 1100 1000 0111 1100 1111(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 50.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 50,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 1 000 000 100 009 935(10) converted to signed binary in one's complement representation: