1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 100 000 001 000 555 ÷ 2 = 50 000 000 500 277 + 1;
- 50 000 000 500 277 ÷ 2 = 25 000 000 250 138 + 1;
- 25 000 000 250 138 ÷ 2 = 12 500 000 125 069 + 0;
- 12 500 000 125 069 ÷ 2 = 6 250 000 062 534 + 1;
- 6 250 000 062 534 ÷ 2 = 3 125 000 031 267 + 0;
- 3 125 000 031 267 ÷ 2 = 1 562 500 015 633 + 1;
- 1 562 500 015 633 ÷ 2 = 781 250 007 816 + 1;
- 781 250 007 816 ÷ 2 = 390 625 003 908 + 0;
- 390 625 003 908 ÷ 2 = 195 312 501 954 + 0;
- 195 312 501 954 ÷ 2 = 97 656 250 977 + 0;
- 97 656 250 977 ÷ 2 = 48 828 125 488 + 1;
- 48 828 125 488 ÷ 2 = 24 414 062 744 + 0;
- 24 414 062 744 ÷ 2 = 12 207 031 372 + 0;
- 12 207 031 372 ÷ 2 = 6 103 515 686 + 0;
- 6 103 515 686 ÷ 2 = 3 051 757 843 + 0;
- 3 051 757 843 ÷ 2 = 1 525 878 921 + 1;
- 1 525 878 921 ÷ 2 = 762 939 460 + 1;
- 762 939 460 ÷ 2 = 381 469 730 + 0;
- 381 469 730 ÷ 2 = 190 734 865 + 0;
- 190 734 865 ÷ 2 = 95 367 432 + 1;
- 95 367 432 ÷ 2 = 47 683 716 + 0;
- 47 683 716 ÷ 2 = 23 841 858 + 0;
- 23 841 858 ÷ 2 = 11 920 929 + 0;
- 11 920 929 ÷ 2 = 5 960 464 + 1;
- 5 960 464 ÷ 2 = 2 980 232 + 0;
- 2 980 232 ÷ 2 = 1 490 116 + 0;
- 1 490 116 ÷ 2 = 745 058 + 0;
- 745 058 ÷ 2 = 372 529 + 0;
- 372 529 ÷ 2 = 186 264 + 1;
- 186 264 ÷ 2 = 93 132 + 0;
- 93 132 ÷ 2 = 46 566 + 0;
- 46 566 ÷ 2 = 23 283 + 0;
- 23 283 ÷ 2 = 11 641 + 1;
- 11 641 ÷ 2 = 5 820 + 1;
- 5 820 ÷ 2 = 2 910 + 0;
- 2 910 ÷ 2 = 1 455 + 0;
- 1 455 ÷ 2 = 727 + 1;
- 727 ÷ 2 = 363 + 1;
- 363 ÷ 2 = 181 + 1;
- 181 ÷ 2 = 90 + 1;
- 90 ÷ 2 = 45 + 0;
- 45 ÷ 2 = 22 + 1;
- 22 ÷ 2 = 11 + 0;
- 11 ÷ 2 = 5 + 1;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
100 000 001 000 555(10) = 101 1010 1111 0011 0001 0000 1000 1001 1000 0100 0110 1011(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 47.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 47,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 100 000 001 000 555(10) converted to signed binary in one's complement representation: