1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 000 000 000 000 000 066 ÷ 2 = 500 000 000 000 000 033 + 0;
- 500 000 000 000 000 033 ÷ 2 = 250 000 000 000 000 016 + 1;
- 250 000 000 000 000 016 ÷ 2 = 125 000 000 000 000 008 + 0;
- 125 000 000 000 000 008 ÷ 2 = 62 500 000 000 000 004 + 0;
- 62 500 000 000 000 004 ÷ 2 = 31 250 000 000 000 002 + 0;
- 31 250 000 000 000 002 ÷ 2 = 15 625 000 000 000 001 + 0;
- 15 625 000 000 000 001 ÷ 2 = 7 812 500 000 000 000 + 1;
- 7 812 500 000 000 000 ÷ 2 = 3 906 250 000 000 000 + 0;
- 3 906 250 000 000 000 ÷ 2 = 1 953 125 000 000 000 + 0;
- 1 953 125 000 000 000 ÷ 2 = 976 562 500 000 000 + 0;
- 976 562 500 000 000 ÷ 2 = 488 281 250 000 000 + 0;
- 488 281 250 000 000 ÷ 2 = 244 140 625 000 000 + 0;
- 244 140 625 000 000 ÷ 2 = 122 070 312 500 000 + 0;
- 122 070 312 500 000 ÷ 2 = 61 035 156 250 000 + 0;
- 61 035 156 250 000 ÷ 2 = 30 517 578 125 000 + 0;
- 30 517 578 125 000 ÷ 2 = 15 258 789 062 500 + 0;
- 15 258 789 062 500 ÷ 2 = 7 629 394 531 250 + 0;
- 7 629 394 531 250 ÷ 2 = 3 814 697 265 625 + 0;
- 3 814 697 265 625 ÷ 2 = 1 907 348 632 812 + 1;
- 1 907 348 632 812 ÷ 2 = 953 674 316 406 + 0;
- 953 674 316 406 ÷ 2 = 476 837 158 203 + 0;
- 476 837 158 203 ÷ 2 = 238 418 579 101 + 1;
- 238 418 579 101 ÷ 2 = 119 209 289 550 + 1;
- 119 209 289 550 ÷ 2 = 59 604 644 775 + 0;
- 59 604 644 775 ÷ 2 = 29 802 322 387 + 1;
- 29 802 322 387 ÷ 2 = 14 901 161 193 + 1;
- 14 901 161 193 ÷ 2 = 7 450 580 596 + 1;
- 7 450 580 596 ÷ 2 = 3 725 290 298 + 0;
- 3 725 290 298 ÷ 2 = 1 862 645 149 + 0;
- 1 862 645 149 ÷ 2 = 931 322 574 + 1;
- 931 322 574 ÷ 2 = 465 661 287 + 0;
- 465 661 287 ÷ 2 = 232 830 643 + 1;
- 232 830 643 ÷ 2 = 116 415 321 + 1;
- 116 415 321 ÷ 2 = 58 207 660 + 1;
- 58 207 660 ÷ 2 = 29 103 830 + 0;
- 29 103 830 ÷ 2 = 14 551 915 + 0;
- 14 551 915 ÷ 2 = 7 275 957 + 1;
- 7 275 957 ÷ 2 = 3 637 978 + 1;
- 3 637 978 ÷ 2 = 1 818 989 + 0;
- 1 818 989 ÷ 2 = 909 494 + 1;
- 909 494 ÷ 2 = 454 747 + 0;
- 454 747 ÷ 2 = 227 373 + 1;
- 227 373 ÷ 2 = 113 686 + 1;
- 113 686 ÷ 2 = 56 843 + 0;
- 56 843 ÷ 2 = 28 421 + 1;
- 28 421 ÷ 2 = 14 210 + 1;
- 14 210 ÷ 2 = 7 105 + 0;
- 7 105 ÷ 2 = 3 552 + 1;
- 3 552 ÷ 2 = 1 776 + 0;
- 1 776 ÷ 2 = 888 + 0;
- 888 ÷ 2 = 444 + 0;
- 444 ÷ 2 = 222 + 0;
- 222 ÷ 2 = 111 + 0;
- 111 ÷ 2 = 55 + 1;
- 55 ÷ 2 = 27 + 1;
- 27 ÷ 2 = 13 + 1;
- 13 ÷ 2 = 6 + 1;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 000 000 000 000 000 066(10) = 1101 1110 0000 1011 0110 1011 0011 1010 0111 0110 0100 0000 0000 0100 0010(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 60.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 60,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 1 000 000 000 000 000 066(10) converted to signed binary in one's complement representation: