1. Start with the positive version of the number:
|-7 251 709 002 325| = 7 251 709 002 325
2. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 7 251 709 002 325 ÷ 2 = 3 625 854 501 162 + 1;
- 3 625 854 501 162 ÷ 2 = 1 812 927 250 581 + 0;
- 1 812 927 250 581 ÷ 2 = 906 463 625 290 + 1;
- 906 463 625 290 ÷ 2 = 453 231 812 645 + 0;
- 453 231 812 645 ÷ 2 = 226 615 906 322 + 1;
- 226 615 906 322 ÷ 2 = 113 307 953 161 + 0;
- 113 307 953 161 ÷ 2 = 56 653 976 580 + 1;
- 56 653 976 580 ÷ 2 = 28 326 988 290 + 0;
- 28 326 988 290 ÷ 2 = 14 163 494 145 + 0;
- 14 163 494 145 ÷ 2 = 7 081 747 072 + 1;
- 7 081 747 072 ÷ 2 = 3 540 873 536 + 0;
- 3 540 873 536 ÷ 2 = 1 770 436 768 + 0;
- 1 770 436 768 ÷ 2 = 885 218 384 + 0;
- 885 218 384 ÷ 2 = 442 609 192 + 0;
- 442 609 192 ÷ 2 = 221 304 596 + 0;
- 221 304 596 ÷ 2 = 110 652 298 + 0;
- 110 652 298 ÷ 2 = 55 326 149 + 0;
- 55 326 149 ÷ 2 = 27 663 074 + 1;
- 27 663 074 ÷ 2 = 13 831 537 + 0;
- 13 831 537 ÷ 2 = 6 915 768 + 1;
- 6 915 768 ÷ 2 = 3 457 884 + 0;
- 3 457 884 ÷ 2 = 1 728 942 + 0;
- 1 728 942 ÷ 2 = 864 471 + 0;
- 864 471 ÷ 2 = 432 235 + 1;
- 432 235 ÷ 2 = 216 117 + 1;
- 216 117 ÷ 2 = 108 058 + 1;
- 108 058 ÷ 2 = 54 029 + 0;
- 54 029 ÷ 2 = 27 014 + 1;
- 27 014 ÷ 2 = 13 507 + 0;
- 13 507 ÷ 2 = 6 753 + 1;
- 6 753 ÷ 2 = 3 376 + 1;
- 3 376 ÷ 2 = 1 688 + 0;
- 1 688 ÷ 2 = 844 + 0;
- 844 ÷ 2 = 422 + 0;
- 422 ÷ 2 = 211 + 0;
- 211 ÷ 2 = 105 + 1;
- 105 ÷ 2 = 52 + 1;
- 52 ÷ 2 = 26 + 0;
- 26 ÷ 2 = 13 + 0;
- 13 ÷ 2 = 6 + 1;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
3. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
7 251 709 002 325(10) = 110 1001 1000 0110 1011 1000 1010 0000 0010 0101 0101(2)
4. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 43.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 43,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
5. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.