1. Start with the positive version of the number:
|-1 996 488 576| = 1 996 488 576
2. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 996 488 576 ÷ 2 = 998 244 288 + 0;
- 998 244 288 ÷ 2 = 499 122 144 + 0;
- 499 122 144 ÷ 2 = 249 561 072 + 0;
- 249 561 072 ÷ 2 = 124 780 536 + 0;
- 124 780 536 ÷ 2 = 62 390 268 + 0;
- 62 390 268 ÷ 2 = 31 195 134 + 0;
- 31 195 134 ÷ 2 = 15 597 567 + 0;
- 15 597 567 ÷ 2 = 7 798 783 + 1;
- 7 798 783 ÷ 2 = 3 899 391 + 1;
- 3 899 391 ÷ 2 = 1 949 695 + 1;
- 1 949 695 ÷ 2 = 974 847 + 1;
- 974 847 ÷ 2 = 487 423 + 1;
- 487 423 ÷ 2 = 243 711 + 1;
- 243 711 ÷ 2 = 121 855 + 1;
- 121 855 ÷ 2 = 60 927 + 1;
- 60 927 ÷ 2 = 30 463 + 1;
- 30 463 ÷ 2 = 15 231 + 1;
- 15 231 ÷ 2 = 7 615 + 1;
- 7 615 ÷ 2 = 3 807 + 1;
- 3 807 ÷ 2 = 1 903 + 1;
- 1 903 ÷ 2 = 951 + 1;
- 951 ÷ 2 = 475 + 1;
- 475 ÷ 2 = 237 + 1;
- 237 ÷ 2 = 118 + 1;
- 118 ÷ 2 = 59 + 0;
- 59 ÷ 2 = 29 + 1;
- 29 ÷ 2 = 14 + 1;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
3. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 996 488 576(10) = 111 0110 1111 1111 1111 1111 1000 0000(2)
4. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 31.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 31,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 32.
5. Get the positive binary computer representation on 32 bits (4 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 32.