1. Start with the positive version of the number:
|-134 208 950| = 134 208 950
2. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 134 208 950 ÷ 2 = 67 104 475 + 0;
- 67 104 475 ÷ 2 = 33 552 237 + 1;
- 33 552 237 ÷ 2 = 16 776 118 + 1;
- 16 776 118 ÷ 2 = 8 388 059 + 0;
- 8 388 059 ÷ 2 = 4 194 029 + 1;
- 4 194 029 ÷ 2 = 2 097 014 + 1;
- 2 097 014 ÷ 2 = 1 048 507 + 0;
- 1 048 507 ÷ 2 = 524 253 + 1;
- 524 253 ÷ 2 = 262 126 + 1;
- 262 126 ÷ 2 = 131 063 + 0;
- 131 063 ÷ 2 = 65 531 + 1;
- 65 531 ÷ 2 = 32 765 + 1;
- 32 765 ÷ 2 = 16 382 + 1;
- 16 382 ÷ 2 = 8 191 + 0;
- 8 191 ÷ 2 = 4 095 + 1;
- 4 095 ÷ 2 = 2 047 + 1;
- 2 047 ÷ 2 = 1 023 + 1;
- 1 023 ÷ 2 = 511 + 1;
- 511 ÷ 2 = 255 + 1;
- 255 ÷ 2 = 127 + 1;
- 127 ÷ 2 = 63 + 1;
- 63 ÷ 2 = 31 + 1;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
3. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
134 208 950(10) = 111 1111 1111 1101 1101 1011 0110(2)
4. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 27.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 27,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 32.
5. Get the positive binary computer representation on 32 bits (4 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 32.