What are the required steps to convert base 10 decimal system
number 90 557 306 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 90 557 306 ÷ 2 = 45 278 653 + 0;
- 45 278 653 ÷ 2 = 22 639 326 + 1;
- 22 639 326 ÷ 2 = 11 319 663 + 0;
- 11 319 663 ÷ 2 = 5 659 831 + 1;
- 5 659 831 ÷ 2 = 2 829 915 + 1;
- 2 829 915 ÷ 2 = 1 414 957 + 1;
- 1 414 957 ÷ 2 = 707 478 + 1;
- 707 478 ÷ 2 = 353 739 + 0;
- 353 739 ÷ 2 = 176 869 + 1;
- 176 869 ÷ 2 = 88 434 + 1;
- 88 434 ÷ 2 = 44 217 + 0;
- 44 217 ÷ 2 = 22 108 + 1;
- 22 108 ÷ 2 = 11 054 + 0;
- 11 054 ÷ 2 = 5 527 + 0;
- 5 527 ÷ 2 = 2 763 + 1;
- 2 763 ÷ 2 = 1 381 + 1;
- 1 381 ÷ 2 = 690 + 1;
- 690 ÷ 2 = 345 + 0;
- 345 ÷ 2 = 172 + 1;
- 172 ÷ 2 = 86 + 0;
- 86 ÷ 2 = 43 + 0;
- 43 ÷ 2 = 21 + 1;
- 21 ÷ 2 = 10 + 1;
- 10 ÷ 2 = 5 + 0;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
90 557 306(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
90 557 306 (base 10) = 101 0110 0101 1100 1011 0111 1010 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.