What are the required steps to convert base 10 decimal system
number 87 647 895 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 87 647 895 ÷ 2 = 43 823 947 + 1;
- 43 823 947 ÷ 2 = 21 911 973 + 1;
- 21 911 973 ÷ 2 = 10 955 986 + 1;
- 10 955 986 ÷ 2 = 5 477 993 + 0;
- 5 477 993 ÷ 2 = 2 738 996 + 1;
- 2 738 996 ÷ 2 = 1 369 498 + 0;
- 1 369 498 ÷ 2 = 684 749 + 0;
- 684 749 ÷ 2 = 342 374 + 1;
- 342 374 ÷ 2 = 171 187 + 0;
- 171 187 ÷ 2 = 85 593 + 1;
- 85 593 ÷ 2 = 42 796 + 1;
- 42 796 ÷ 2 = 21 398 + 0;
- 21 398 ÷ 2 = 10 699 + 0;
- 10 699 ÷ 2 = 5 349 + 1;
- 5 349 ÷ 2 = 2 674 + 1;
- 2 674 ÷ 2 = 1 337 + 0;
- 1 337 ÷ 2 = 668 + 1;
- 668 ÷ 2 = 334 + 0;
- 334 ÷ 2 = 167 + 0;
- 167 ÷ 2 = 83 + 1;
- 83 ÷ 2 = 41 + 1;
- 41 ÷ 2 = 20 + 1;
- 20 ÷ 2 = 10 + 0;
- 10 ÷ 2 = 5 + 0;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
87 647 895(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
87 647 895 (base 10) = 101 0011 1001 0110 0110 1001 0111 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.