What are the required steps to convert base 10 decimal system
number 812 900 900 809 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 812 900 900 809 ÷ 2 = 406 450 450 404 + 1;
- 406 450 450 404 ÷ 2 = 203 225 225 202 + 0;
- 203 225 225 202 ÷ 2 = 101 612 612 601 + 0;
- 101 612 612 601 ÷ 2 = 50 806 306 300 + 1;
- 50 806 306 300 ÷ 2 = 25 403 153 150 + 0;
- 25 403 153 150 ÷ 2 = 12 701 576 575 + 0;
- 12 701 576 575 ÷ 2 = 6 350 788 287 + 1;
- 6 350 788 287 ÷ 2 = 3 175 394 143 + 1;
- 3 175 394 143 ÷ 2 = 1 587 697 071 + 1;
- 1 587 697 071 ÷ 2 = 793 848 535 + 1;
- 793 848 535 ÷ 2 = 396 924 267 + 1;
- 396 924 267 ÷ 2 = 198 462 133 + 1;
- 198 462 133 ÷ 2 = 99 231 066 + 1;
- 99 231 066 ÷ 2 = 49 615 533 + 0;
- 49 615 533 ÷ 2 = 24 807 766 + 1;
- 24 807 766 ÷ 2 = 12 403 883 + 0;
- 12 403 883 ÷ 2 = 6 201 941 + 1;
- 6 201 941 ÷ 2 = 3 100 970 + 1;
- 3 100 970 ÷ 2 = 1 550 485 + 0;
- 1 550 485 ÷ 2 = 775 242 + 1;
- 775 242 ÷ 2 = 387 621 + 0;
- 387 621 ÷ 2 = 193 810 + 1;
- 193 810 ÷ 2 = 96 905 + 0;
- 96 905 ÷ 2 = 48 452 + 1;
- 48 452 ÷ 2 = 24 226 + 0;
- 24 226 ÷ 2 = 12 113 + 0;
- 12 113 ÷ 2 = 6 056 + 1;
- 6 056 ÷ 2 = 3 028 + 0;
- 3 028 ÷ 2 = 1 514 + 0;
- 1 514 ÷ 2 = 757 + 0;
- 757 ÷ 2 = 378 + 1;
- 378 ÷ 2 = 189 + 0;
- 189 ÷ 2 = 94 + 1;
- 94 ÷ 2 = 47 + 0;
- 47 ÷ 2 = 23 + 1;
- 23 ÷ 2 = 11 + 1;
- 11 ÷ 2 = 5 + 1;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
812 900 900 809(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
812 900 900 809 (base 10) = 1011 1101 0100 0100 1010 1011 0101 1111 1100 1001 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.