What are the required steps to convert base 10 decimal system
number 794 939 785 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 794 939 785 ÷ 2 = 397 469 892 + 1;
- 397 469 892 ÷ 2 = 198 734 946 + 0;
- 198 734 946 ÷ 2 = 99 367 473 + 0;
- 99 367 473 ÷ 2 = 49 683 736 + 1;
- 49 683 736 ÷ 2 = 24 841 868 + 0;
- 24 841 868 ÷ 2 = 12 420 934 + 0;
- 12 420 934 ÷ 2 = 6 210 467 + 0;
- 6 210 467 ÷ 2 = 3 105 233 + 1;
- 3 105 233 ÷ 2 = 1 552 616 + 1;
- 1 552 616 ÷ 2 = 776 308 + 0;
- 776 308 ÷ 2 = 388 154 + 0;
- 388 154 ÷ 2 = 194 077 + 0;
- 194 077 ÷ 2 = 97 038 + 1;
- 97 038 ÷ 2 = 48 519 + 0;
- 48 519 ÷ 2 = 24 259 + 1;
- 24 259 ÷ 2 = 12 129 + 1;
- 12 129 ÷ 2 = 6 064 + 1;
- 6 064 ÷ 2 = 3 032 + 0;
- 3 032 ÷ 2 = 1 516 + 0;
- 1 516 ÷ 2 = 758 + 0;
- 758 ÷ 2 = 379 + 0;
- 379 ÷ 2 = 189 + 1;
- 189 ÷ 2 = 94 + 1;
- 94 ÷ 2 = 47 + 0;
- 47 ÷ 2 = 23 + 1;
- 23 ÷ 2 = 11 + 1;
- 11 ÷ 2 = 5 + 1;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
794 939 785(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
794 939 785 (base 10) = 10 1111 0110 0001 1101 0001 1000 1001 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.