What are the required steps to convert base 10 decimal system
number 7 499 297 034 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 7 499 297 034 ÷ 2 = 3 749 648 517 + 0;
- 3 749 648 517 ÷ 2 = 1 874 824 258 + 1;
- 1 874 824 258 ÷ 2 = 937 412 129 + 0;
- 937 412 129 ÷ 2 = 468 706 064 + 1;
- 468 706 064 ÷ 2 = 234 353 032 + 0;
- 234 353 032 ÷ 2 = 117 176 516 + 0;
- 117 176 516 ÷ 2 = 58 588 258 + 0;
- 58 588 258 ÷ 2 = 29 294 129 + 0;
- 29 294 129 ÷ 2 = 14 647 064 + 1;
- 14 647 064 ÷ 2 = 7 323 532 + 0;
- 7 323 532 ÷ 2 = 3 661 766 + 0;
- 3 661 766 ÷ 2 = 1 830 883 + 0;
- 1 830 883 ÷ 2 = 915 441 + 1;
- 915 441 ÷ 2 = 457 720 + 1;
- 457 720 ÷ 2 = 228 860 + 0;
- 228 860 ÷ 2 = 114 430 + 0;
- 114 430 ÷ 2 = 57 215 + 0;
- 57 215 ÷ 2 = 28 607 + 1;
- 28 607 ÷ 2 = 14 303 + 1;
- 14 303 ÷ 2 = 7 151 + 1;
- 7 151 ÷ 2 = 3 575 + 1;
- 3 575 ÷ 2 = 1 787 + 1;
- 1 787 ÷ 2 = 893 + 1;
- 893 ÷ 2 = 446 + 1;
- 446 ÷ 2 = 223 + 0;
- 223 ÷ 2 = 111 + 1;
- 111 ÷ 2 = 55 + 1;
- 55 ÷ 2 = 27 + 1;
- 27 ÷ 2 = 13 + 1;
- 13 ÷ 2 = 6 + 1;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
7 499 297 034(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
7 499 297 034 (base 10) = 1 1011 1110 1111 1110 0011 0001 0000 1010 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.