What are the required steps to convert base 10 decimal system
number 4 310 134 921 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 4 310 134 921 ÷ 2 = 2 155 067 460 + 1;
- 2 155 067 460 ÷ 2 = 1 077 533 730 + 0;
- 1 077 533 730 ÷ 2 = 538 766 865 + 0;
- 538 766 865 ÷ 2 = 269 383 432 + 1;
- 269 383 432 ÷ 2 = 134 691 716 + 0;
- 134 691 716 ÷ 2 = 67 345 858 + 0;
- 67 345 858 ÷ 2 = 33 672 929 + 0;
- 33 672 929 ÷ 2 = 16 836 464 + 1;
- 16 836 464 ÷ 2 = 8 418 232 + 0;
- 8 418 232 ÷ 2 = 4 209 116 + 0;
- 4 209 116 ÷ 2 = 2 104 558 + 0;
- 2 104 558 ÷ 2 = 1 052 279 + 0;
- 1 052 279 ÷ 2 = 526 139 + 1;
- 526 139 ÷ 2 = 263 069 + 1;
- 263 069 ÷ 2 = 131 534 + 1;
- 131 534 ÷ 2 = 65 767 + 0;
- 65 767 ÷ 2 = 32 883 + 1;
- 32 883 ÷ 2 = 16 441 + 1;
- 16 441 ÷ 2 = 8 220 + 1;
- 8 220 ÷ 2 = 4 110 + 0;
- 4 110 ÷ 2 = 2 055 + 0;
- 2 055 ÷ 2 = 1 027 + 1;
- 1 027 ÷ 2 = 513 + 1;
- 513 ÷ 2 = 256 + 1;
- 256 ÷ 2 = 128 + 0;
- 128 ÷ 2 = 64 + 0;
- 64 ÷ 2 = 32 + 0;
- 32 ÷ 2 = 16 + 0;
- 16 ÷ 2 = 8 + 0;
- 8 ÷ 2 = 4 + 0;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
4 310 134 921(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
4 310 134 921 (base 10) = 1 0000 0000 1110 0111 0111 0000 1000 1001 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.