What are the required steps to convert base 10 decimal system
number 42 366 603 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 42 366 603 ÷ 2 = 21 183 301 + 1;
- 21 183 301 ÷ 2 = 10 591 650 + 1;
- 10 591 650 ÷ 2 = 5 295 825 + 0;
- 5 295 825 ÷ 2 = 2 647 912 + 1;
- 2 647 912 ÷ 2 = 1 323 956 + 0;
- 1 323 956 ÷ 2 = 661 978 + 0;
- 661 978 ÷ 2 = 330 989 + 0;
- 330 989 ÷ 2 = 165 494 + 1;
- 165 494 ÷ 2 = 82 747 + 0;
- 82 747 ÷ 2 = 41 373 + 1;
- 41 373 ÷ 2 = 20 686 + 1;
- 20 686 ÷ 2 = 10 343 + 0;
- 10 343 ÷ 2 = 5 171 + 1;
- 5 171 ÷ 2 = 2 585 + 1;
- 2 585 ÷ 2 = 1 292 + 1;
- 1 292 ÷ 2 = 646 + 0;
- 646 ÷ 2 = 323 + 0;
- 323 ÷ 2 = 161 + 1;
- 161 ÷ 2 = 80 + 1;
- 80 ÷ 2 = 40 + 0;
- 40 ÷ 2 = 20 + 0;
- 20 ÷ 2 = 10 + 0;
- 10 ÷ 2 = 5 + 0;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
42 366 603(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
42 366 603 (base 10) = 10 1000 0110 0111 0110 1000 1011 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.