What are the required steps to convert base 10 decimal system
number 4 147 200 113 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 4 147 200 113 ÷ 2 = 2 073 600 056 + 1;
- 2 073 600 056 ÷ 2 = 1 036 800 028 + 0;
- 1 036 800 028 ÷ 2 = 518 400 014 + 0;
- 518 400 014 ÷ 2 = 259 200 007 + 0;
- 259 200 007 ÷ 2 = 129 600 003 + 1;
- 129 600 003 ÷ 2 = 64 800 001 + 1;
- 64 800 001 ÷ 2 = 32 400 000 + 1;
- 32 400 000 ÷ 2 = 16 200 000 + 0;
- 16 200 000 ÷ 2 = 8 100 000 + 0;
- 8 100 000 ÷ 2 = 4 050 000 + 0;
- 4 050 000 ÷ 2 = 2 025 000 + 0;
- 2 025 000 ÷ 2 = 1 012 500 + 0;
- 1 012 500 ÷ 2 = 506 250 + 0;
- 506 250 ÷ 2 = 253 125 + 0;
- 253 125 ÷ 2 = 126 562 + 1;
- 126 562 ÷ 2 = 63 281 + 0;
- 63 281 ÷ 2 = 31 640 + 1;
- 31 640 ÷ 2 = 15 820 + 0;
- 15 820 ÷ 2 = 7 910 + 0;
- 7 910 ÷ 2 = 3 955 + 0;
- 3 955 ÷ 2 = 1 977 + 1;
- 1 977 ÷ 2 = 988 + 1;
- 988 ÷ 2 = 494 + 0;
- 494 ÷ 2 = 247 + 0;
- 247 ÷ 2 = 123 + 1;
- 123 ÷ 2 = 61 + 1;
- 61 ÷ 2 = 30 + 1;
- 30 ÷ 2 = 15 + 0;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
4 147 200 113(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
4 147 200 113 (base 10) = 1111 0111 0011 0001 0100 0000 0111 0001 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.