What are the required steps to convert base 10 decimal system
number 4 012 367 276 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 4 012 367 276 ÷ 2 = 2 006 183 638 + 0;
- 2 006 183 638 ÷ 2 = 1 003 091 819 + 0;
- 1 003 091 819 ÷ 2 = 501 545 909 + 1;
- 501 545 909 ÷ 2 = 250 772 954 + 1;
- 250 772 954 ÷ 2 = 125 386 477 + 0;
- 125 386 477 ÷ 2 = 62 693 238 + 1;
- 62 693 238 ÷ 2 = 31 346 619 + 0;
- 31 346 619 ÷ 2 = 15 673 309 + 1;
- 15 673 309 ÷ 2 = 7 836 654 + 1;
- 7 836 654 ÷ 2 = 3 918 327 + 0;
- 3 918 327 ÷ 2 = 1 959 163 + 1;
- 1 959 163 ÷ 2 = 979 581 + 1;
- 979 581 ÷ 2 = 489 790 + 1;
- 489 790 ÷ 2 = 244 895 + 0;
- 244 895 ÷ 2 = 122 447 + 1;
- 122 447 ÷ 2 = 61 223 + 1;
- 61 223 ÷ 2 = 30 611 + 1;
- 30 611 ÷ 2 = 15 305 + 1;
- 15 305 ÷ 2 = 7 652 + 1;
- 7 652 ÷ 2 = 3 826 + 0;
- 3 826 ÷ 2 = 1 913 + 0;
- 1 913 ÷ 2 = 956 + 1;
- 956 ÷ 2 = 478 + 0;
- 478 ÷ 2 = 239 + 0;
- 239 ÷ 2 = 119 + 1;
- 119 ÷ 2 = 59 + 1;
- 59 ÷ 2 = 29 + 1;
- 29 ÷ 2 = 14 + 1;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
4 012 367 276(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
4 012 367 276 (base 10) = 1110 1111 0010 0111 1101 1101 1010 1100 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.