What are the required steps to convert base 10 decimal system
number 34 567 981 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 34 567 981 ÷ 2 = 17 283 990 + 1;
- 17 283 990 ÷ 2 = 8 641 995 + 0;
- 8 641 995 ÷ 2 = 4 320 997 + 1;
- 4 320 997 ÷ 2 = 2 160 498 + 1;
- 2 160 498 ÷ 2 = 1 080 249 + 0;
- 1 080 249 ÷ 2 = 540 124 + 1;
- 540 124 ÷ 2 = 270 062 + 0;
- 270 062 ÷ 2 = 135 031 + 0;
- 135 031 ÷ 2 = 67 515 + 1;
- 67 515 ÷ 2 = 33 757 + 1;
- 33 757 ÷ 2 = 16 878 + 1;
- 16 878 ÷ 2 = 8 439 + 0;
- 8 439 ÷ 2 = 4 219 + 1;
- 4 219 ÷ 2 = 2 109 + 1;
- 2 109 ÷ 2 = 1 054 + 1;
- 1 054 ÷ 2 = 527 + 0;
- 527 ÷ 2 = 263 + 1;
- 263 ÷ 2 = 131 + 1;
- 131 ÷ 2 = 65 + 1;
- 65 ÷ 2 = 32 + 1;
- 32 ÷ 2 = 16 + 0;
- 16 ÷ 2 = 8 + 0;
- 8 ÷ 2 = 4 + 0;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
34 567 981(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
34 567 981 (base 10) = 10 0000 1111 0111 0111 0010 1101 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.