What are the required steps to convert base 10 decimal system
number 3 221 225 519 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 3 221 225 519 ÷ 2 = 1 610 612 759 + 1;
- 1 610 612 759 ÷ 2 = 805 306 379 + 1;
- 805 306 379 ÷ 2 = 402 653 189 + 1;
- 402 653 189 ÷ 2 = 201 326 594 + 1;
- 201 326 594 ÷ 2 = 100 663 297 + 0;
- 100 663 297 ÷ 2 = 50 331 648 + 1;
- 50 331 648 ÷ 2 = 25 165 824 + 0;
- 25 165 824 ÷ 2 = 12 582 912 + 0;
- 12 582 912 ÷ 2 = 6 291 456 + 0;
- 6 291 456 ÷ 2 = 3 145 728 + 0;
- 3 145 728 ÷ 2 = 1 572 864 + 0;
- 1 572 864 ÷ 2 = 786 432 + 0;
- 786 432 ÷ 2 = 393 216 + 0;
- 393 216 ÷ 2 = 196 608 + 0;
- 196 608 ÷ 2 = 98 304 + 0;
- 98 304 ÷ 2 = 49 152 + 0;
- 49 152 ÷ 2 = 24 576 + 0;
- 24 576 ÷ 2 = 12 288 + 0;
- 12 288 ÷ 2 = 6 144 + 0;
- 6 144 ÷ 2 = 3 072 + 0;
- 3 072 ÷ 2 = 1 536 + 0;
- 1 536 ÷ 2 = 768 + 0;
- 768 ÷ 2 = 384 + 0;
- 384 ÷ 2 = 192 + 0;
- 192 ÷ 2 = 96 + 0;
- 96 ÷ 2 = 48 + 0;
- 48 ÷ 2 = 24 + 0;
- 24 ÷ 2 = 12 + 0;
- 12 ÷ 2 = 6 + 0;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
3 221 225 519(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
3 221 225 519 (base 10) = 1100 0000 0000 0000 0000 0000 0010 1111 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.