What are the required steps to convert base 10 decimal system
number 31 032 563 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 31 032 563 ÷ 2 = 15 516 281 + 1;
- 15 516 281 ÷ 2 = 7 758 140 + 1;
- 7 758 140 ÷ 2 = 3 879 070 + 0;
- 3 879 070 ÷ 2 = 1 939 535 + 0;
- 1 939 535 ÷ 2 = 969 767 + 1;
- 969 767 ÷ 2 = 484 883 + 1;
- 484 883 ÷ 2 = 242 441 + 1;
- 242 441 ÷ 2 = 121 220 + 1;
- 121 220 ÷ 2 = 60 610 + 0;
- 60 610 ÷ 2 = 30 305 + 0;
- 30 305 ÷ 2 = 15 152 + 1;
- 15 152 ÷ 2 = 7 576 + 0;
- 7 576 ÷ 2 = 3 788 + 0;
- 3 788 ÷ 2 = 1 894 + 0;
- 1 894 ÷ 2 = 947 + 0;
- 947 ÷ 2 = 473 + 1;
- 473 ÷ 2 = 236 + 1;
- 236 ÷ 2 = 118 + 0;
- 118 ÷ 2 = 59 + 0;
- 59 ÷ 2 = 29 + 1;
- 29 ÷ 2 = 14 + 1;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
31 032 563(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
31 032 563 (base 10) = 1 1101 1001 1000 0100 1111 0011 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.