What are the required steps to convert base 10 decimal system
number 287 965 297 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 287 965 297 ÷ 2 = 143 982 648 + 1;
- 143 982 648 ÷ 2 = 71 991 324 + 0;
- 71 991 324 ÷ 2 = 35 995 662 + 0;
- 35 995 662 ÷ 2 = 17 997 831 + 0;
- 17 997 831 ÷ 2 = 8 998 915 + 1;
- 8 998 915 ÷ 2 = 4 499 457 + 1;
- 4 499 457 ÷ 2 = 2 249 728 + 1;
- 2 249 728 ÷ 2 = 1 124 864 + 0;
- 1 124 864 ÷ 2 = 562 432 + 0;
- 562 432 ÷ 2 = 281 216 + 0;
- 281 216 ÷ 2 = 140 608 + 0;
- 140 608 ÷ 2 = 70 304 + 0;
- 70 304 ÷ 2 = 35 152 + 0;
- 35 152 ÷ 2 = 17 576 + 0;
- 17 576 ÷ 2 = 8 788 + 0;
- 8 788 ÷ 2 = 4 394 + 0;
- 4 394 ÷ 2 = 2 197 + 0;
- 2 197 ÷ 2 = 1 098 + 1;
- 1 098 ÷ 2 = 549 + 0;
- 549 ÷ 2 = 274 + 1;
- 274 ÷ 2 = 137 + 0;
- 137 ÷ 2 = 68 + 1;
- 68 ÷ 2 = 34 + 0;
- 34 ÷ 2 = 17 + 0;
- 17 ÷ 2 = 8 + 1;
- 8 ÷ 2 = 4 + 0;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
287 965 297(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
287 965 297 (base 10) = 1 0001 0010 1010 0000 0000 0111 0001 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.