What are the required steps to convert base 10 decimal system
number 2 684 396 481 713 800 428 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 2 684 396 481 713 800 428 ÷ 2 = 1 342 198 240 856 900 214 + 0;
- 1 342 198 240 856 900 214 ÷ 2 = 671 099 120 428 450 107 + 0;
- 671 099 120 428 450 107 ÷ 2 = 335 549 560 214 225 053 + 1;
- 335 549 560 214 225 053 ÷ 2 = 167 774 780 107 112 526 + 1;
- 167 774 780 107 112 526 ÷ 2 = 83 887 390 053 556 263 + 0;
- 83 887 390 053 556 263 ÷ 2 = 41 943 695 026 778 131 + 1;
- 41 943 695 026 778 131 ÷ 2 = 20 971 847 513 389 065 + 1;
- 20 971 847 513 389 065 ÷ 2 = 10 485 923 756 694 532 + 1;
- 10 485 923 756 694 532 ÷ 2 = 5 242 961 878 347 266 + 0;
- 5 242 961 878 347 266 ÷ 2 = 2 621 480 939 173 633 + 0;
- 2 621 480 939 173 633 ÷ 2 = 1 310 740 469 586 816 + 1;
- 1 310 740 469 586 816 ÷ 2 = 655 370 234 793 408 + 0;
- 655 370 234 793 408 ÷ 2 = 327 685 117 396 704 + 0;
- 327 685 117 396 704 ÷ 2 = 163 842 558 698 352 + 0;
- 163 842 558 698 352 ÷ 2 = 81 921 279 349 176 + 0;
- 81 921 279 349 176 ÷ 2 = 40 960 639 674 588 + 0;
- 40 960 639 674 588 ÷ 2 = 20 480 319 837 294 + 0;
- 20 480 319 837 294 ÷ 2 = 10 240 159 918 647 + 0;
- 10 240 159 918 647 ÷ 2 = 5 120 079 959 323 + 1;
- 5 120 079 959 323 ÷ 2 = 2 560 039 979 661 + 1;
- 2 560 039 979 661 ÷ 2 = 1 280 019 989 830 + 1;
- 1 280 019 989 830 ÷ 2 = 640 009 994 915 + 0;
- 640 009 994 915 ÷ 2 = 320 004 997 457 + 1;
- 320 004 997 457 ÷ 2 = 160 002 498 728 + 1;
- 160 002 498 728 ÷ 2 = 80 001 249 364 + 0;
- 80 001 249 364 ÷ 2 = 40 000 624 682 + 0;
- 40 000 624 682 ÷ 2 = 20 000 312 341 + 0;
- 20 000 312 341 ÷ 2 = 10 000 156 170 + 1;
- 10 000 156 170 ÷ 2 = 5 000 078 085 + 0;
- 5 000 078 085 ÷ 2 = 2 500 039 042 + 1;
- 2 500 039 042 ÷ 2 = 1 250 019 521 + 0;
- 1 250 019 521 ÷ 2 = 625 009 760 + 1;
- 625 009 760 ÷ 2 = 312 504 880 + 0;
- 312 504 880 ÷ 2 = 156 252 440 + 0;
- 156 252 440 ÷ 2 = 78 126 220 + 0;
- 78 126 220 ÷ 2 = 39 063 110 + 0;
- 39 063 110 ÷ 2 = 19 531 555 + 0;
- 19 531 555 ÷ 2 = 9 765 777 + 1;
- 9 765 777 ÷ 2 = 4 882 888 + 1;
- 4 882 888 ÷ 2 = 2 441 444 + 0;
- 2 441 444 ÷ 2 = 1 220 722 + 0;
- 1 220 722 ÷ 2 = 610 361 + 0;
- 610 361 ÷ 2 = 305 180 + 1;
- 305 180 ÷ 2 = 152 590 + 0;
- 152 590 ÷ 2 = 76 295 + 0;
- 76 295 ÷ 2 = 38 147 + 1;
- 38 147 ÷ 2 = 19 073 + 1;
- 19 073 ÷ 2 = 9 536 + 1;
- 9 536 ÷ 2 = 4 768 + 0;
- 4 768 ÷ 2 = 2 384 + 0;
- 2 384 ÷ 2 = 1 192 + 0;
- 1 192 ÷ 2 = 596 + 0;
- 596 ÷ 2 = 298 + 0;
- 298 ÷ 2 = 149 + 0;
- 149 ÷ 2 = 74 + 1;
- 74 ÷ 2 = 37 + 0;
- 37 ÷ 2 = 18 + 1;
- 18 ÷ 2 = 9 + 0;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
2 684 396 481 713 800 428(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
2 684 396 481 713 800 428 (base 10) = 10 0101 0100 0000 1110 0100 0110 0000 1010 1000 1101 1100 0000 0100 1110 1100 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.