What are the required steps to convert base 10 decimal system
number 25 649 974 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 25 649 974 ÷ 2 = 12 824 987 + 0;
- 12 824 987 ÷ 2 = 6 412 493 + 1;
- 6 412 493 ÷ 2 = 3 206 246 + 1;
- 3 206 246 ÷ 2 = 1 603 123 + 0;
- 1 603 123 ÷ 2 = 801 561 + 1;
- 801 561 ÷ 2 = 400 780 + 1;
- 400 780 ÷ 2 = 200 390 + 0;
- 200 390 ÷ 2 = 100 195 + 0;
- 100 195 ÷ 2 = 50 097 + 1;
- 50 097 ÷ 2 = 25 048 + 1;
- 25 048 ÷ 2 = 12 524 + 0;
- 12 524 ÷ 2 = 6 262 + 0;
- 6 262 ÷ 2 = 3 131 + 0;
- 3 131 ÷ 2 = 1 565 + 1;
- 1 565 ÷ 2 = 782 + 1;
- 782 ÷ 2 = 391 + 0;
- 391 ÷ 2 = 195 + 1;
- 195 ÷ 2 = 97 + 1;
- 97 ÷ 2 = 48 + 1;
- 48 ÷ 2 = 24 + 0;
- 24 ÷ 2 = 12 + 0;
- 12 ÷ 2 = 6 + 0;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
25 649 974(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
25 649 974 (base 10) = 1 1000 0111 0110 0011 0011 0110 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.