What are the required steps to convert base 10 decimal system
number 1 879 047 893 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 879 047 893 ÷ 2 = 939 523 946 + 1;
- 939 523 946 ÷ 2 = 469 761 973 + 0;
- 469 761 973 ÷ 2 = 234 880 986 + 1;
- 234 880 986 ÷ 2 = 117 440 493 + 0;
- 117 440 493 ÷ 2 = 58 720 246 + 1;
- 58 720 246 ÷ 2 = 29 360 123 + 0;
- 29 360 123 ÷ 2 = 14 680 061 + 1;
- 14 680 061 ÷ 2 = 7 340 030 + 1;
- 7 340 030 ÷ 2 = 3 670 015 + 0;
- 3 670 015 ÷ 2 = 1 835 007 + 1;
- 1 835 007 ÷ 2 = 917 503 + 1;
- 917 503 ÷ 2 = 458 751 + 1;
- 458 751 ÷ 2 = 229 375 + 1;
- 229 375 ÷ 2 = 114 687 + 1;
- 114 687 ÷ 2 = 57 343 + 1;
- 57 343 ÷ 2 = 28 671 + 1;
- 28 671 ÷ 2 = 14 335 + 1;
- 14 335 ÷ 2 = 7 167 + 1;
- 7 167 ÷ 2 = 3 583 + 1;
- 3 583 ÷ 2 = 1 791 + 1;
- 1 791 ÷ 2 = 895 + 1;
- 895 ÷ 2 = 447 + 1;
- 447 ÷ 2 = 223 + 1;
- 223 ÷ 2 = 111 + 1;
- 111 ÷ 2 = 55 + 1;
- 55 ÷ 2 = 27 + 1;
- 27 ÷ 2 = 13 + 1;
- 13 ÷ 2 = 6 + 1;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 879 047 893(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
1 879 047 893 (base 10) = 110 1111 1111 1111 1111 1110 1101 0101 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.