What are the required steps to convert base 10 decimal system
number 17 640 506 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 17 640 506 ÷ 2 = 8 820 253 + 0;
- 8 820 253 ÷ 2 = 4 410 126 + 1;
- 4 410 126 ÷ 2 = 2 205 063 + 0;
- 2 205 063 ÷ 2 = 1 102 531 + 1;
- 1 102 531 ÷ 2 = 551 265 + 1;
- 551 265 ÷ 2 = 275 632 + 1;
- 275 632 ÷ 2 = 137 816 + 0;
- 137 816 ÷ 2 = 68 908 + 0;
- 68 908 ÷ 2 = 34 454 + 0;
- 34 454 ÷ 2 = 17 227 + 0;
- 17 227 ÷ 2 = 8 613 + 1;
- 8 613 ÷ 2 = 4 306 + 1;
- 4 306 ÷ 2 = 2 153 + 0;
- 2 153 ÷ 2 = 1 076 + 1;
- 1 076 ÷ 2 = 538 + 0;
- 538 ÷ 2 = 269 + 0;
- 269 ÷ 2 = 134 + 1;
- 134 ÷ 2 = 67 + 0;
- 67 ÷ 2 = 33 + 1;
- 33 ÷ 2 = 16 + 1;
- 16 ÷ 2 = 8 + 0;
- 8 ÷ 2 = 4 + 0;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
17 640 506(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
17 640 506 (base 10) = 1 0000 1101 0010 1100 0011 1010 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.