What are the required steps to convert base 10 decimal system
number 17 470 541 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 17 470 541 ÷ 2 = 8 735 270 + 1;
- 8 735 270 ÷ 2 = 4 367 635 + 0;
- 4 367 635 ÷ 2 = 2 183 817 + 1;
- 2 183 817 ÷ 2 = 1 091 908 + 1;
- 1 091 908 ÷ 2 = 545 954 + 0;
- 545 954 ÷ 2 = 272 977 + 0;
- 272 977 ÷ 2 = 136 488 + 1;
- 136 488 ÷ 2 = 68 244 + 0;
- 68 244 ÷ 2 = 34 122 + 0;
- 34 122 ÷ 2 = 17 061 + 0;
- 17 061 ÷ 2 = 8 530 + 1;
- 8 530 ÷ 2 = 4 265 + 0;
- 4 265 ÷ 2 = 2 132 + 1;
- 2 132 ÷ 2 = 1 066 + 0;
- 1 066 ÷ 2 = 533 + 0;
- 533 ÷ 2 = 266 + 1;
- 266 ÷ 2 = 133 + 0;
- 133 ÷ 2 = 66 + 1;
- 66 ÷ 2 = 33 + 0;
- 33 ÷ 2 = 16 + 1;
- 16 ÷ 2 = 8 + 0;
- 8 ÷ 2 = 4 + 0;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
17 470 541(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
17 470 541 (base 10) = 1 0000 1010 1001 0100 0100 1101 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.